
cudaCR: An In-kernel Application-level Checkpoint/Restart
Scheme for CUDA-enabled GPUs

Behnam Pourghassemi

Electrical Engineering and Computer Science
University of California, Irvine, CA

bpourgha@uci.edu

Aparna Chandramowlishwaran

Electrical Engineering and Computer Science
University of California, Irvine, CA

amowli@uci.edu

Abstract—Fault-tolerance is becoming increasingly impor-
tant as we enter the era of exascale computing. Increasing the
number of cores results in a smaller mean time between fail-
ures, and consequently, higher probability of errors. Among the
different software fault tolerance techniques, checkpoint/restart
is the most commonly used method in supercomputers, the de-
facto standard for large-scale systems. Although there exist
several checkpoint/restart implementations for CPUs, only a
handful have been proposed for GPUs even though more than
60 supercomputers in the TOP 500 list are heterogeneous CPU-
GPU systems.

In this paper, we propose a scalable application-level check-
point/restart scheme, called cudaCR for long-running kernels
on NVIDIA GPUs. Our proposed scheme is able to capture
GPU state inside the kernel and roll back to the previous
state within the same kernel, unlike state-of-the-art approaches.
We evaluate cudaCR on application benchmarks with different
characteristics such as dense matrix multiply, stencil computa-
tion, and k-means clustering on a Tesla K40 GPU. We observe
that cudaCR can fully restore state with low overheads in both
time (less than 10% in best case) and memory requirements
after applying a number of different optimizations (storage
gain: 54% for dense matrix multiply, 31% for k-means, and
4% for stencil computation). Looking forward, we identify new
optimizations to further reduce the overhead to make cudaCR
highly scalable.

Keywords-Fault tolerance, soft errors, checkpoint/restart,
GPU, supercomputer

I. INTRODUCTION

High-performance computing (HPC) deploys supercom-

puters with millions of cores for running massive-scale

computationally intensive applications. As the demand for

performance increases, the number of cores in the next

generation of supercomputers is also expected to increase.

On one hand, moving from petascale towards exascale opens

new opportunities but on the other hand, it also brings new

challenges in the reliability of machines. Even if there are no

errors in software, there always exist failures in hardware.

The Mean Time Between Failure (MTBF) for a single node

is estimated to be between 10 to 1000. Contrary to this,

the MTBF of a machine with hundred thousand nodes may

drop to less than hour [1], [2]. Therefore, investing in a fault-

tolerant system for large-scale long-running applications is

inevitable. Errors in systems can be broadly classified into

Figure 1. Break-down of failures in TSUBAME 2.5 from October 1, 2015
to October 1, 2016. Top: Failure distribution based on their source. Bottom:
Break-down of GPU failures based on their reason.

two categories – (a) hard errors which might be permanent
like chip malfunction that requires hardware replacement

and (b) soft errors which are transient like bit flips that

can be recovered by rewriting correct data from another

location. Checkpoint/restart is one of the most commonly

used methods for fault-tolerance in supercomputers that can

recover transient errors. The key idea is to periodically save

the state of a system into a secondary storage. In the event of

a failure, the system is recovered by restarting the execution

from the last clean state from the secondary storage.

Today, Graphical Processing Units (GPUs) are popular as

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.100

725

they offer both higher peak performance and higher band-

width compared to traditional CPU processors. Titan, the

third fastest supercomputer in the Top 500 list has 18, 688
compute nodes and the same number of Tesla K20 GPUs1.

With an increasing number of GPUs in large-scale systems,

reliable GPU computing is now as important as reliable CPU

computing. Moreover, GPUs exhibit more vulnerability to

hardware failures compared to CPUs. The top of Figure 1

shows the breakdown of failures by category distilled from

the failure history of TSUBAME2.52 during the period from

October 1, 2015, to October 1, 2016. There was a total of

613 failures and a staggering ≈ 40% are GPU failures. In

the bottom of Figure 1, GPU errors are categorized based

on its reason. As we can see, ECC errors (which includes

single-bit and double-bit soft errors) are a significant fraction

of the total GPU errors. This clearly demonstrates the high

failure rate of GPUs and is the motivating factor in designing

an efficient checkpoint/restart scheme for GPUs similar in

spirit to CPUs.

Checkpoint/Restart (CR) schemes for CPUs are typically

implemented at three levels – kernel, library, and application.

• Kernel-level – The operating system does check-

point/restart using appropriate system calls and as a result,

the application remains transparent to the system. In

this scenario, there is no application-level modification

required to ensure fault tolerance.

• Library-level (also known as user-level) – The applica-
tion is linked with an user-library that is in charge of

saving/restoring information. In this level, there is still no

modification required in the application but it has to link

with the CR library.

• Application-level – Checkpoint/rollback is done by the
application and it has to be re-compiled.

GPU is an external device that is handled by drivers rather

than an operating system. Additionally, there is no available

API to access the computation state at the library level, so

the first two approaches discussed above are infeasible on

current GPUs [3]. Although there exist few schemes known

as kernel-level GPU checkpointing [4], [5], they are in fact

implemented on top of previous CPU checkpointing and save

computational state after GPU completes the kernel execu-

tion. So, they are essentially out-kernel checkpoint/restart
schemes. In other words, there is no checkpointing of in-

kernel data and no rollback inside the GPU kernel.

This paper proposes an application-level in-kernel check-
point/restart scheme for GPUs. To ensure compatibility of
our proposed scheme on a vast majority of applications, we

determine and set necessary conditions. Our implemented

scheme makes relevant changes in both the host and de-

vice source codes at compile time and adds checkpointing

modules that are invoked at runtime. This paper makes the

1https://www.olcf.ornl.gov/titan
2http://mon.g.gsic.titech.ac.jp/trouble-list/index.htm

Figure 2. Block diagram of the GPU architecture and programming model.

following contributions.

• We design and implement a new scheme for in-kernel

checkpointing of GPUs called cudaCR, where the user
is only responsible for determining checkpoint locations.

A pre-compiler automatically translates both the CPU and

GPU codes to new codes that are capable of checkpointing

and restoring the correct state (Section III).

• We discuss novel algorithms and data structures for col-
lecting computation states asynchronously from different

GPU memories and present optimizations for significantly

reducing the storage of secondary data and overhead from

checkpointing (Section III).

• We evaluate cudaCR on application benchmarks that ex-

hibit different data access patterns such as dense matrix

multiply, stencil computation, and k-means clustering on

a Tesla K40 GPU to test both the effectiveness and effi-

ciency of the proposed scheme. We observe that cudaCR

can fully restore state with overheads less than 10% in the

best case (Section IV).

II. BACKGROUND

A. GPU and CUDA programming model

GPUs were originally designed for rendering images

and graphics pipelines but they soon became a compelling

platform for scientific and high-performance computing due

to its high peak performance and memory bandwidth. In

2007, NVIDIA released CUDA (Compute Unified Device

Architecture) as a new programming model to program

NVIDIA GPUs in a much easier way.

726

CUDA organizes the device code using abstractions of

threads, blocks, and grids. Kernels, functions on the device
side, are executed by threads. Groups of threads are orga-
nized into blocks and threads within a block can synchronize
with one another. CUDA assigns each block to one GPU

computing box aka Streaming Multiprocessor (SM). Blocks

cannot synchronize among one another and form a grid
that denotes application scope. There is also a hierarchy

of memories in GPUs with different access policies. The

global memory is accessible by the entire grid (all blocks
and threads within a block), the shared memory is local
to each thread block (only visible to threads inside the

particular block), and the registers are thread-local where
each thread has a limited number of them. The local memory
is an extension of registers that reside in the global memory.

GPUs also have other types of memories known as texture
and constant that have the same access policy as the global
memory but are read-only. The GPU architecture and data

movement between host and device along with the different

memory hierarchies are illustrated in Figure 2.

B. Checkpoint/Restart

The most popular fault-tolerance technique for long-

running applications is checkpoint/restart (CR). CR appli-

cations periodically take a snapshot of the system and save

it into secondary storage (checkpointing phase). In the event
of a failure or migration, the current state is replaced with

the previously stored state and execution resumes from the

last checkpoint (restoration phase). Several CR mechanisms
at different levels (kernel, library, application) have been

developed for CPUs [6] [7] [8].

Currently, all of the above-discussed mechanisms are not

feasible on NVIDIA GPUs due to the absence of particular

operating system and relevant driver/runtime APIs to extract

computation state inside the kernel. In spite of these limi-

tations, researchers have developed a handful of GPU CR

schemes in recent years. CheCuda [4] was the first GPU

CR scheme implemented in 2009. It uses Berkeley Lab

Checkpoint/Restart (BLCR) library [8] for checkpointing

system state. But, because this library does not support

CUDA contexts, it backups and destroys CUDA contexts

before checkpointing, then runs BLCR checkpointing and

finally reallocates all destroyed GPU contexts. In 2011,

Nukada et al. developed a new CUDA CR library (NVCR)

[5] that is transparent to applications. NVCR does not make

changes in CUDA context’s addresses after reallocation so,

it is not necessary to recompile applications. CheCL [9] is

another application that follows CheCuda’s approach but it

was designed specifically for OpenCL applications. Another

technique for OpenCL-accelerated applications is VOCL-FT

[10] which protects co-processor’s memory from silent data

corruption using virtualization layer APIs. It validates device

data by monitoring GPU ECC output from host side and

efficiently recovers bit-flips by re-playing faulty epoch.

Figure 3. Comparison of in-kernel vs out-kernel checkpoint/restart
schemes.

In the event of failure, all of the above-discussed CR

techniques reload GPU state and re-launch kernels from

the beginning. In other words, they are not able to reload

thread’s computing state inside the kernel. We refer to these

approaches as out-kernel CR schemes. Figure 3 distinguishes
the two CR methodologies – in-kernel and out-kernel CR.

C. In-kernel Checkpoint/Restart

Although newer NVIDIA GPUs are equipped with Single-

bit Error Correction - Double-bit Error Detection (SEC-

DED) ECC, a recently published paper showed that this is

not well suited for modern DRAM subsystems and there still

exists a noticeable amount of undetected errors in large-

scale systems [11]. Additionally, D.Tiwari et al. observed

that SEC-DED causes non-negligible Silent Data Corruption

(SDC) in GPU clusters because it cannot protect all GPU

memories such as queues, scheduler, flip-flops, etc, [12].

Hopefully, ECC can recover these errors, but there are some

real-world applications such as molecular dynamics that

prefer not to enable ECC because it has side effects on

performance, storage, and power [13]. Another fact is that

GPU SEC-DED cannot correct multiple bit errors. Recently

published experience report on the Titan supercomputer

[14] shows that MTBF of double-bit errors is about 160

hours but assuming next generation of supercomputers with

more number of nodes, this time is expected to drop by an

order of magnitude. In that case, long-running applications,

specifically non-iterative ones like CCSD in NWCHEM 3

will benefit significantly from an in-kernel recovery system.

HKC [15] is a hybrid CPU/GPU checkpoint/restart which

was proposed as an in-kernel GPU checkpointing scheme.

3http://www.nwchem-sw.org/index.php/Benchmarks

727

While HKC claims that it can recover GPU state at system-

level, it uses debugging API which adds additional time

overhead to the system and checkpoint/restart is handled by

the CPU rather than the GPU. Jiang et al. [3] present a data

structure and mechanism to save/restore computation state

that is located in different GPU memories. Their contribution

was a stepping stone in cudaCR development. However, their
application-level implementation seems to be restricted to

iterative applications. Once a failure is detected inside the

kernel, it breaks the kernel and restoration phase happens in

the next iteration of that kernel. They use kernel break as a

way to synchronize blocks at checkpointing time.

In the next section, we describe our fully in-kernel CR
scheme, cudaCR, that addresses the above deficiencies. We
shift checkpoint/restart from the CPU to the GPU. Our

application-level scheme is able to save computation state,

which is distributed over the entire GPU memory hierarchy,

anywhere inside the kernel efficiently. In event of a failure,

it can restore in-kernel state and resume the execution from

the last checkpoint somewhere inside the GPU kernel. Also,

by defining a new algorithm and data structure, we make

cudaCR asynchronous with respect to the thread blocks.

III. IMPLEMENTATION

In this section, we describe the algorithm and implemen-

tation details of cudaCR. Specifically, we discuss the pre-
compiler transformations to inject checkpoints and optimiza-

tions to reduce the overhead of checkpointing.

A. Necessary and sufficient conditions for in-kernel CR

To ensure that full in-kernel CR works correctly, all

threads have to synchronize at checkpoints and during

recovery. We will show by example what might happen if

there is no synchronization among threads. Figure 4 shows

a segment of device code with two checkpoints. If no error

is detected at the two checkpoints, shared variable s will
finally have a value of 6. Since threads may not execute
simultaneously and there is no guarantee on their execution

order in CUDA, it is possible that thread 0 meets the second
checkpoint earlier than thread 1. Assuming there is no error,
thread 0 does checkpointing and continues execution. Now,
suppose an error occurs in the system, e.g. bit-flip in variable

s. Then, thread 1 detects an error as part of its checkpointing
and jumps to the first checkpoint and reloads s with value 3
and continues execution. In the absence of thread 0, since
thread 0 has already finished its computation, the final value
of s would be 5. If this situation is reversed, i.e. thread 1
meets the second checkpoint before thread 0, the final value
would be 4. This example illustrates code vulnerability due
to the lack of synchronization between threads of a block

in CR. Further extending this example from threads of a

block to threads of different blocks in a grid and replacing

shared variable s with a global variable g, we can infer that

__shared s;
if (threadIdx.x == 0)

s = 3;
__syncthreads();
checkpoint(); //first checkpoint
if (threadIdx.x == 0)

s = s + 1;
__syncthreads();
if (threadIdx.x == 1)

s = s + 2;
checkpoint(); //second checkpoint

Figure 4. An example of the synchronization problem in the restoration
phase.

a similar problem might occur if there is no synchronization

among all thread blocks.

Since CUDA supports synchronization between threads

within a block, we can use __syncthreads() before

checkpoint modules but it’s mandatory for all threads in that

block to participate in checkpointing/restoration. So, our first
condition is as follows.

1) Checkpoints must be seen by all participating threads.

In other words, the user is not allowed to insert check-

points in a conditional statement or code fragments unreach-

able by all threads.

Unfortunately, we cannot expand the same idea for all

threads (threads in different blocks) because CUDA does

not support synchronization among blocks. Therefore, our

second constraint is defined as follows.

2) Threads of a block are not allowed to modify a global
memory location that has been accessed by another
block.

This condition simply states that applications cannot have

block interference in write transactions. By implicitly sep-

arating blocks, we can achieve asynchronous checkpoint-

ing/restoration. Asynchronous blocks’ checkpoint/restart

also has an advantage – in the event of a failure in the

global environment, it is not required for all the blocks to

redo their computations, only the block that has modified

that location has to redo its computation.

B. Checkpointing storage

For in-kernel CR, we have to store sufficient information

about the kernel for a full recovery. This information is

distributed across the different GPU memories, precisely,

in three domains – thread’s private memory (this includes

registers and local memory), shared memory, and global

memory. It is essential to allocate sufficient temporary

storage to backup the data across these three memory

domains. If the system demands more memory or the data

728

is not modified for a sufficiently long time, the backup

data might shift to hard disk as permanent storage. CPU

main memory and GPU global memory are two alternatives

for temporary checkpoint storage. We chose GPU global

memory in our implementation because, in the restoration
phase and checkpointing phase, we don’t have to deal with
low throughput PCIe for data movement between CPU and

GPU. Also, this design choice moves CR completely to the

GPU and it can be handled independently of the CPU.

C. Algorithm

Once checkpoint storage and essential information for

backup are determined, the user has to insert checkpoints

based on the first condition outlined in the previous section.

This is the only task the user has to perform to enable

cudaCR. After that, a precompiler makes changes to both
the host and device codes as part of the application-level

checkpoint/restart procedure. The required changes on the

host side are minimal. It is essentially allocating memory

for backup and instantiating data structures for CR. Most of

the changes happen on the device side. We classify these

transformations into two categories based on the data.

• For global data, once it is allocated in the device memory,
the precompiler allocates the same amount of memory

as backup and saves its beginning address and its size

in a global backup list (CR_gList). The CR_gList
is passed to device’s threads along with other kernel

arguments.

• Since shared and private data are initialized in-

side the kernel, we can also allocate their backup

on the device side. Using cudaMalloc() to allo-

cate backup memory is too time-consuming; so we

transfer shared and private memory allocations from

the device to the host. For shared data, we al-

locate a memory of size number_of_blocks ×
max_shared_memory_per_block. The precompiler
also creates a structure out of private data and al-

locates a vector of this struct with the size of

number_of_threads × sizeof(struct).

After the precompiler transforms both the host and device

codes for final compilation, these new codes are linked

with our checkpoint/restart library. At run-time, when the

execution stream meets a checkpoint, it synchronizes the

threads in all the blocks and checks for faults. If at least

one thread detects an error, the entire block goes to the

restoration phase. Otherwise, it goes to the checkpointing

phase.

1) In the restoration phase, all the threads perform a syn-

chronous jump to the previous checkpoint label. Then,

each thread invokes a module in the checkpoint/restart

library to copy the thread’s private information from its

backup to its original location. The shared memory is also

reloaded from its backup located in the device memory.

To parallelize the shared memory copy, data movement

is split among the threads in a block. For global memory

restoration, only those global locations that belong to

the faulty block are reloaded. Finally, the faulty block

resumes its execution.

2) In the checkpointing phase, we perform all the data

movements discussed above but in the reverse direction.

Thread’s private memory, block’s shared memory, and

the associated global information are checkpointed into

their temporary backup. After checkpointing, execution

resumes with no branch.

D. Incremental checkpointing

When application’s execution meets checkpoints, it has

to save or restore information. The best-case scenario is

to save/restore only those sections that have been modified

since the previous checkpoint. This method, also known as

incremental checkpointing, reduces CR time significantly but

requires us to continuously keep tracking and registering

data into the corresponding data structure. By registering,
we mean recording what variables are created and where

they are located. This information helps CR applications to

quickly find data instead of scanning the entire memory. All

registered data need not be copied during checkpoints so we

need another function called tracking. Tracking here means
determining which data has been modified from the previous

checkpoint. It is similar in spirit to the idea of dirty bits in

caches.

For private data registration, the precompiler scans the

device code and finds all local data initializations (including

variables, pointers, arrays, structs and so on) and creates a

structure to save this information. To find out which data are

shared between threads in a block, the precompiler scans the

device code for the __shared__ directive. For global data,
the registering phase takes place on the host side. All global

arrays and their backups are registered in lists (CR_gList)
and passed as arguments to kernels. This structure contains

the beginning address of the original and backup arrays

along with their sizes. In the device code, the precompiler

finds every global write transaction. This information is

recorded into a data structure called CR_gAddr. Every
thread has one instantiation of CR_gAddr. During the

checkpointing phase, each thread scans its CR_gAddr. By
using these data structures, each thread is able to find the

backup location of its accesses. Then it copies the data from

the original location to the relevant backup location. The

same procedure happens during the restoration phase but

with the data movement in the reverse direction.

E. Optimization

One drawback of the current implementation is when

an application expands and launches a kernel with more

threads and blocks, the amount of backup memory required

for shared and private data increases. For example, if an

729

application with 100 million threads launches a kernel

with a block size of 32 × 32, it will allocate nearly 5

GBs of shared memory backup (assuming 48 KB shared

memory per block). To make cudaCR scalable, we apply a
space optimization. The main idea behind this optimization

is to reuse the backup locations that have already

been allocated for threads that have finished execution.

Therefore, instead of allocating number_of_blocks
× max_shared_memory_per_block for shared

memory backup, the precompiler only allocates

number_of_SMs × max_blocks_per_SM ×
max_shared_memory_per_block. At run-time,

once a block finishes its task, its backup data is no longer

required since it has passed all checkpoints successfully.

So, the next block will use the shared memory backup of

the corresponding SM. To implement this optimization,

cudaCR has to know which active block is running on

which SM. Unfortunately, CUDA run-time API does

not have access to this information. Therefore, we

inline low-level PTX instructions to dynamically assign

backup locations to active blocks. We apply a similar

approach to private backup memory where the precompiler

allocates number_of_SMs × max_threads_per_SM
× sizeof(struct) bytes for private memory

backup instead of number_of_threads ×
sizeof(struct). By indexing threads in blocks,

the precompiler can uniquely assign a pre-used (but not-in-

use) chunk of private memory backup to each active thread.

In summary, with this optimization, the amount of backup

storage for shared and private memories does not depend

on the application’s size but only on the GPU being used.

IV. RESULTS AND DISCUSSION

In this section, we briefly describe the various benchmarks

used for evaluating cudaCR and their access patterns. Then,

we present time and storage overhead of checkpoint/restart

using cudaCR on these test cases.

A. Experimental setup

We evaluate our implementation on NVIDIA Tesla K40

GPU with 15 streaming multiprocessors. The shared mem-

ory size is 48 KB per block and the global memory band-

width is 288 GB/s. The host-side CPU is a dual-socket Intel

Xeon E5-2630 v3 with 8 cores per socket for a total of 16

cores. We use CUDA nvcc version 7.5 as the GPU compiler
with full optimization enabled (-O3 flag).

B. Case studies

To validate the integrity and measure the overhead of

our proposed scheme, we test cudaCR on three different

CUDA benchmarks detailed below with different data access

patterns.

• 3-D Stencil computation – An iterative Jacobi stencil

operation on a regular 3-D grid. We chose three grids of

Figure 5. Application run time of naive and CR-enabled tests for different
benchmarks. Light blue bar denotes zero-overhead out-kernel CR in the
error-polluted test. The numbers on top of the bars denote problem sizes.

sizes 512 × 512 × 400, 1024 × 512 × 400, and 1024 ×
1024× 400 for our experiments. This is a memory-bound
computation with a low flop:byte ratio. This benchmark

is from the Parboil GPU benchmark suite [16].

• Dense matrix multiply (sgemm) – This benchmark per-
forms a dense matrix multiplication using the standard

BLAS format on matrices of sizes 8192, 16384, and

19456. Matrix multiply is one of the most popular and

well-studied algorithms that are highly compute bound.

This benchmark is also from the Parboil GPU test suite.

• k-means clustering – This is a popular iterative clustering
algorithm used extensively in data-mining. We choose k
to be 100, 400, and 800 for our tests. This benchmark is

from Rodinia GPU test suite [17].

Since the duration of the kernels in the above benchmarks

is far from a realistic system’s MTBF, it’s unlikely for them

to encounter any failure during run-time. So, we artificially

inject errors into the system. This is done by modifying

select variables with constant probability in different loca-

tions including local, shared, and global data for randomly

selected threads before checkpoints. For each benchmark, we

conducted three tests. (1) Run the benchmark in an error-

free mode. This is represented as naive in our results. (2)

730

Backup memory without optimization (MB) Backup memory with space optimization (MB)

Benchmark private shared global total private shared global total gain

stencil 18 98 3300 3416 3 < 1 3300 3303 4%

k-means 36 64 220 320 3 < 1 220 223 31%

sgemm 234 262 402 898 9 < 1 402 412 54%

Table I
BACKUP MEMORY REQUIREMENTS FOR BENCHMARKS WITH AND WITHOUT MEMORY OPTIMIZATIONS.

We run the error-polluted kernel without any checkpointing.

(3) We apply cudaCR by making the precompiler changes

and inserting sample checkpoints inside the kernel. Then we

inject faults and output the result.

C. Results

By comparing the outputs of the aforementioned tests, we

observed differences between the first test (naive case) and

second test (faulty kernel without CR) as expected while

the outputs of the first test (naive case) and third test (faulty

kernel with CR) were identical. This experiment shows that

cudaCR can fully recover state on all three benchmarks.

Also, a longer runtime of the third test with respect to

the second test shows that cudaCR re-computed some code
fragments by some blocks for error recovery.

It is almost impossible to report a single value for time

overhead and storage requirement because they depend on

several factors such as the number of checkpoints, number

of blocks that have encountered an error, amount of memory

that has to be checkpointed, number of global memory

accesses, block and grid sizes, and so on. Intuitively, we

can approximate the time of an application with cudaCR by
the following formula.

tCR � t0 + tsetup + n ∗ (αgMg + αsh,pMsh,p + td) + tr

where t0 is the application time without cudaCR, tsetup is
the time needed for backup memory allocation/initialization,

constructing structures, and indexing threads/blocks. tr is the
time spent on re-computing which depends on what fraction

of the blocks go to the restoration phase and degree of

parallelization. n is the number of checkpoints, td is the

error detection time and Mg and Msh,p are the amount

of memory that has to be checkpointed in the global and

shared-private memories respectively. Since we did not use

tracking for shared and private data, the required time to

checkpoint specific amount of such data are about the same,

so we merge them into a single coefficient, αsh,p. However,

for global data, we do tracking that takes considerable time.

In fact, for every global write, cudaCR registers its addresses
into a list in local memory (that may reside in global

memory); hence we expect a larger coefficient for global

data (αg >> αsh,p).

In order to make the test cases comparable, we fix

the number of checkpoints to 2 and ensure the same

SM occupancy for different experiments. We also remove

error detection, re-computation, and fault-injection times

to calculate pure checkpointing overhead. Figure 5 shows

application run-time for the naive code (dark blue bars)

and CR-enabled code (green bars). Unfortunately, none of

the out-kernel checkpoint/restart tools [4], [5] were open-

source or compatible with newer NVIDIA architectures. So,

to compare the efficiency of in-kernel CR, we simulate ideal

(zero-overhead) out-kernel CR in an error-polluted test by

adding kernel re-execution time and asynchronous memory

copy between the device and host (checkpointing) to the

naive test. This is shown by out-kernel (light blue bars) in

Figure 5. The plots in the first row are for sgemm bench-

marks with matrix dimension of 19456, 16384, and 8192

respectively. In sgemm, threads have limited global accesses
(32 writes per thread in a 32 × 32 tile), so we observe

small overheads of 17.9%, 19.2%, and 37% respectively. As

the size of the matrices increases, the time for computation

(t0) increases while global accesses (Mg) remains almost

constant. Hence the checkpointing overhead reduces. The

second-row shows the results for k-means clustering with
varying number of clusters (800, 400, and 100). We observe

extremely small overheads of 2-3% for this benchmark

because it has few global modifications per thread and more

importantly, we insert checkpoints in the best locations that

require minimal data for checkpointing/restoration. Unlike

k-means and sgemm, stencil performs significantly more

global memory modifications. We increase the dimension of

the grid to enable more than 800 writes per thread for this

benchmark to really stress cudaCR. The third row presents

results for grid sizes 512×512×400, 1024×512×400, and
1024×1024×400. As one might expect, due to a large num-
ber of global accesses, we observe larger overheads (nearly

200%). Comparing the overhead of cudaCR with out-kernel,

it is preferable to re-start the kernel in the case of stencil.
The time overheads demonstrate how effective cudaCR can
be if checkpoints are inserted at appropriate locations (like

k-means clustering) or on compute-bound applications (such
as sgemm). However, it might not deliver good performance
on applications that spend the majority of their time on

global memory accesses rather than computation (bandwidth

applications like stencil).
Table I shows the the amount of backup memory used

by the three benchmarks before and after the memory

731

optimization. For stencil (grid size of 1024×1024×400 with
a block size of 16× 16), the naive code requires 3416 MB
but after space optimization, the backup memory reduces to

3303 MB. Similarly, k-means (1 million data points with
34 double-precision features, and 400 clusters) and sgemm
(with matrix size of 4096×4096 and block size of 8×64) use
31% and 54% less backup memory respectively. Therefore,

cudaCR shows lower storage requirement after the memory
optimization.

V. CONCLUSION

Due to the lack of full in-kernel GPU checkpoint/restart

at the application-level, we design and implement a new

scheme for NVIDIA GPUs and CUDA programming model

called cudaCR. The proposed scheme is able to capture data
universally inside the kernel at checkpoints under a specific

condition. Unlike previous GPU checkpoint/restart imple-

mentations, cudaCR moves checkpointing/restoration task

from CPU to GPU. Experiments across different benchmarks

show that our scheme has low overheads in time and backup

storage, especially for real and standard GPU applications.

Our in-kernel checkpoint/restart is suitable for long-running

kernels. Currently, our application-level CR requires the user

to inject checkpoints in the code. Future work will address

the challenge of designing a smart compiler that can identify

the best (or approximate) locations for checkpointing.

REFERENCES

[1] J. Dongarra, T. Herault, and Y. Robert, “Fault tolerance tech-
niques for high-performance computing,” in Fault-Tolerance
Techniques for High-Performance Computing. Springer
International Publishing, 2015, pp. 3–85.

[2] R. Riesen, K. Ferreira, J. Stearley, R. Oldfield, J. H. Laros III,
K. Pedretti, R. Brightwell et al., “Redundant computing for
exascale systems,” Sandia National Laboratories, 2010.

[3] X. Guo, H. Jiang, and K.-C. Li, “A checkpoint/restart scheme
for cuda applications with complex memory hierarchy,” in
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2013 14th ACIS
International Conference on. IEEE, 2013, pp. 247–252.

[4] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi,
“Checuda: A checkpoint/restart tool for cuda applications,”
in 2009 International Conference on Parallel and Distributed
Computing, Applications and Technologies. IEEE, 2009, pp.
408–413.

[5] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A trans-
parent checkpoint-restart library for nvidia cuda,” in Paral-
lel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on. IEEE,
2011, pp. 104–113.

[6] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques,
K. Pingali, and P. Stodghill, “Implementation and evaluation
of a scalable application-level checkpoint-recovery scheme
for mpi programs,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing. IEEE Computer Society,
2004, p. 38.

[7] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt:
Transparent checkpointing under unix. Computer Science
Department, 1994.

[8] P. H. Hargrove and J. C. Duell, “Berkeley lab check-
point/restart (blcr) for linux clusters,” in Journal of Physics:
Conference Series, vol. 46, no. 1. IOP Publishing, 2006, p.
494.

[9] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and
H. Kobayashi, “Checl: Transparent checkpointing and process
migration of opencl applications,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International.
IEEE, 2011, pp. 864–876.

[10] A. J. Peña, W. Bland, and P. Balaji, “Vocl-ft: introducing tech-
niques for efficient soft error coprocessor recovery,” in High
Performance Computing, Networking, Storage and Analysis,
2015 SC-International Conference for. IEEE, 2015, pp. 1–
12.

[11] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira,
J. Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in
modern systems: The good, the bad, and the ugly,” in ACM
SIGPLAN Notices, vol. 50, no. 4. ACM, 2015, pp. 297–310.

[12] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech,
S. Vazhkudai, D. Oliveira, D. Londo, N. DeBardeleben,
P. Navaux et al., “Understanding gpu errors on large-scale
hpc systems and the implications for system design and oper-
ation,” in High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on. IEEE, 2015,
pp. 331–342.

[13] R. M. Betz, N. A. DeBardeleben, and R. C. Walker, “An
investigation of the effects of hard and soft errors on graphics
processing unit-accelerated molecular dynamics simulations,”
Concurrency and Computation: Practice and Experience,
vol. 26, no. 13, pp. 2134–2140, 2014.

[14] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell,
“Reliability lessons learned from gpu experience with the titan
supercomputer at oak ridge leadership computing facility,” in
Proceedings of the international conference for high perfor-
mance computing, networking, storage and analysis. ACM,
2015, p. 38.

[15] L. Shi, H. Chen, and T. Li, “Hybrid cpu/gpu checkpoint for
gpu-based heterogeneous systems,” in International Confer-
ence on Parallel Computing in Fluid Dynamics. Springer,
2013, pp. 470–481.

[16] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Par-
boil: A revised benchmark suite for scientific and commer-
cial throughput computing,” Center for Reliable and High-
Performance Computing, vol. 127, 2012.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark suite
for heterogeneous computing,” in Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on. IEEE,
2009, pp. 44–54.

732

