
Multi-core Implementations of the Concurrent

Collections Programming Model

Zoran Budimlić†, Aparna Chandramowlishwaran‡§, Kathleen Knobe‡,
Geoff Lowney‡, Vivek Sarkar†, and Leo Treggiari†

†Department of Computer Science, Rice University
‡Intel Corporation

§Georgia Institute of Technology
zoran@rice.edu, aparna@cc.gatech.edu, kath.knobe@intel.com,

geoff.lowney@intel.com, vsarkar@rice.edu, leo.treggiari@intel.com

Abstract. In this paper we introduce the Concurrent Collections pro-
gramming model, which builds on past work on TStreams [8]. In this
model, programs are written in terms of high-level application-specific
operations. These operations are partially ordered according to only their
semantic constraints. These partial orderings correspond to data flow and
control flow.

This approach supports an important separation of concerns. There are
two roles involved in implementing a parallel program. One is the role of
a domain expert, the developer whose interest and expertise is in the ap-
plication domain, such as finance, genomics, or numerical analysis. The
other is the tuning expert, whose interest and expertise is in performance,
including performance on a particular platform. These may be distinct
individuals or the same individual at different stages in application de-
velopment. The tuning expert may in fact be software (such as a static
or dynamic optimizing compiler). The Concurrent Collections program-
ming model separates the work of the domain expert (the expression of
the semantics of the computation) from the work of the tuning expert
(selection and mapping of actual parallelism to a specific architecture).
This separation simplifies the task of the domain expert. Writing in this
language does not require any reasoning about parallelism or any un-
derstanding of the target architecture. The domain expert is concerned
only with his or her area of expertise (the semantics of the application).
This separation also simplifies the work of the tuning expert. The tuning
expert is given the maximum possible freedom to map the computation
onto the target architecture and is not required to have any understand-
ing of the domain (as is often the case for compilers).

We describe two implementations of the Concurrent Collections program-
ming model. One is IntelR© Concurrent Collections for C/C++ based
on IntelR© Threaded Building Blocks. The other is an X10-based imple-
mentation from the Habanero project at Rice University. We compare
the implementations by showing the results achieved on multi-core SMP
machines when executing the same Concurrent Collections application,
Cholesky factorization, in both these approaches.



1 Introduction

It is now well established that parallel computing is moving into the main-
stream with a rapid increase in the adoption of multicore processors. Unlike
previous generations of mainstream hardware evolution, this shift will have a
major impact on existing and future software. A highly desirable solution to the
multicore software productivity problem is to develop high-level programming
models that are accessible to developers who are experts in different domains
but lack deep experience with parallel programming. In this paper we introduce
the Concurrent Collections (CnC) programming model [7], which builds on past
work on TStreams [8]. In this model, programs are written in terms of high-level
application-specific operations. These operations are partially ordered according
to only their semantic constraints.

The rest of the paper is organized as follows. Section 2 describes the key
concepts of the CnC model. Section 3 summarizes the runtime semantics of CnC,
and describes two implementations of this model for multicore SMP’s. Section 4
presents preliminary results for a Cholesky factorization computation expressed
in CnC and implemented in both runtimes, and Section 5 concludes.

2 Key Concepts of the Concurrent Collections Model

CnC programs are written in terms of high-level application-specific operations.
These operations are partially ordered according to only their semantic con-
straints. The three constructs in this model are step collections, item collections,
and tag collections. Each static collection represents a set of dynamic instances.
Step instances are the unit of distribution and scheduling. Item instances are
the unit of synchronization or communication. The model includes three rela-
tions among these constructs — producer, consumer and prescription relations.
Items (data) are produced and consumed by steps (computation). This consti-
tutes data flow. Tags are produced by steps. They are also used to prescribe
steps, that is, to specify exactly which steps will execute. This CnC analog of
control flow determines if a step will execute but not when it will execute. The
Concurrent Collections model of an application is represented as a graph where
the nodes can be either step, item or tag collections. The edges can be producer,
consumer or prescription relations.

Many languages for expressing parallelism embed parallelism within serial
code. Serial code is often written in terms of locations which can be overwritten.
In addition, serial code requires a serial ordering. If there is no semantically re-
quired ordering, an arbitrary ordering must be specified. Execution of the code in
parallel can require complex analysis to determine if reordering is possible. These
two characteristics of serial code, overwriting and over-serialization, combine to
make it difficult to perform valid compiler transformations. For these reasons,
embedding parallelism in serial code can limit both the language’s effectiveness
and its ease of use. In CnC, there is no overwriting of the items and no arbitrary
serialization among the steps. The data in items are accessed by value, not by



location. The items are tagged and obey dynamic single assignment constraint.
The steps themselves are implemented in a serial language and are viewed as
atomic operations in the model. They are functional and have no side-effects.

2.1 Creating a graph specification

Fig. 1. Graphical Representation for an Example program

We will introduce the graph specification by showing the process to create a
graph of a specific application. This discussion refers to Figure 1 which shows a
simplified graphical representation of the application. The example is a trivial
one. Both computation and data are too fine-grained to be realistic but the
example illustrates all aspects of the model and is easy to follow.

The program reads a set of strings. For each input string it generates a col-
lection of strings that partitions the input into substrings that contain the same
character. For example, if an instance of an input string contains “aaaffqqqm-
mmmmmm”, then it creates four substrings with values: “aaa”, “ff”, “qqq”,
“mmmmmmm”. These instances are further processed.

The process below describes how to put an application into CnC form.

Step collections: The computation is partitioned into high-level operations
called step collections. Step collections are represented in the graphical form as
ovals and in the textual form as paired parentheses. In this application, there
are two step collections: (createSpan) converts each string to a set of substrings.
(processSpan) processes each of the substrings.

Item collections and producer-consumer relations: The data is parti-
tioned into data structures called item collections. Item collections are repre-
sented by rectangles in the graphical form and by paired square brackets in the
textual form. In this application there three item collections, [input], [span] and
[results]. These correspond to the input strings, the created substring spans and
the results of processing these substring spans, respectively. The producer and
consumer relationships between step collections and item collections are repre-
sented as directed edges between steps and items as shown in Figure 1.

The environment (the code that invokes the graph) may produce and con-
sume items and tags. These relationships are represented by directed squiggly
edges in the graphical form and by producer and consumer relations with env in



the text form. In our application, for example, env produces [input] items and
consumes [results] items.

After completing these first two phases the domain expert has a description
that is similar to how people communicate informally about their application on
a whiteboard. The next two phases are required to make this description precise
enough to execute.
Tag components: The typical computation steps in CnC are not long-lived
computations that continually consume input and produce output. Rather, as
each step instance is scheduled it consumes item instances, executes, produces
item instances and terminates.

We need to distinguish among the instances in a step or item collection. Each
dynamic step instance is uniquely identified by an application-specific tag. A tag
component might indicate a node identifier in a graph, a row number in an array,
an employee number, a year, etc. A complete tag might be composed of several
components, for example, employee number and year or maybe xAxis, yAxis,
and iterationNum.

In our example, the instances of the [input] item collection are distinguished
by stringID. The (createSpan) step instances are also distinguished by stringID.
The instances of the [span] item collection, the (processSpan) step collection and
the [results] item collection are distinguished by both a stringID and a spanID
within the string.
Tag Collections and Prescriptions: A specification that includes the tag
components that distinguish among instances is still not precise enough to exe-
cute. Knowing that we distinguish instances of (createSpan) steps by values of
stringID doesnt tell us if a (createSpan) step is to be executed for stringID 58.
This control is the role of tag collections.

Tag collections are shown as triangles in the graphical form and paired an-
gle brackets in the textual form. They are sets of tag instances. There are two
tag collections in our example graph. A tag in <stringTags> identifies the set
of strings. A tag in <spanTags> identifies the set of substrings. A prescriptive
relation may exist between a tag collection, (<stringTags> for example) and a
step collection ((createSpan) for example). The meaning of such a relationship
is this: if a tag instance t, say stringID 58, is in <stringTags>, then the step
instance s in (createSpan) with tag value stringID 58, will execute. Notice that
the prescription relation mechanism determines if a step will execute. When it
executes is up to a subsequent scheduler. A prescriptive relation is shown as a
dotted edge between a tag collection and a step collection. The form of the tags
for a step collection is identical to the form of the tags of its prescribing tag
collection, e.g., instances of the tag collection <stringTags> and the step col-
lection (createSpan) are both distinguished by stringID. The work of (processS-
pan) steps is to perform some processing on each of the substrings generated. A
(processSpan) step will execute for each substring. We require a tag collection,
<spanTags> that identifies a stringID and a spanID for each substring to be
processed. <spanTags> tags will prescribe (processSpan) steps.

Now we consider how the tag collections are produced. The tags in <stringTags>
are produced by the environment which also produces [input] items. The step



(createSpan) not only produces items in [span] but also produces the tags in
<tagSpan> that identifies them.

In this example, the instances in the collections of <spanTags> tags, [span]
items and (processSpan) steps correspond exactly to each other. These relation-
ships are allowed to be much more complex, involving nearest neighbor com-
putations, top-down or bottom-up tree processing or a wide variety of other
relationships. Tags make this language more flexible and more general than a
streaming language.

2.2 Textual Representation

We have already introduced the textual version of step, item and tag collections.
A full textual representation of the graph includes one statement for each re-
lation in the graph. Arrows are used for the producer and consumer relations.
The symbol :: is used for the prescription relation. Declarations indicate the
tag components for item and tag collections. (Recall that tag components for
step collections are derived from the tag components of their prescribing tag
collections.) The resulting graph in textual from is shown below.

// declarations

<stringTags: int stringID>;

<spanTags: int stringID, int spanID>;

<results: int stringID, int spanID>;

[input: int stringID];

[span: int stringID, int spanID];

// prescriptions

<stringTags> :: (createSpan);

<spanTags> :: (processSpan);

// program inputs and outputs

env -> [input], <stringTags>;

[results], <spanTags> -> env;

// producer/consumer relations

[input: stringID] -> (createSpan: stringID);

(createSpan: stringID) -> <spanTags: stringID, spanID>;

(createSpan: stringID) -> [span: stringID, spanID];

[span: stringID, spanID] -> (processSpan: stringID, spanID);

(processSpan: stringID, spanID) -> [result: stringID,spanID];

In addition to specifying the graph, we need to code the steps and the en-
vironment in a serial language. The step has access to the values of its tag
components. It uses get operations to consume items and put operations to
produce items and tags.

2.3 Optimizing and Tuning a Concurrent Collections specification

In this section, we consider the potential parallelism in the example from the
perspective of an optimizing compiler or a tuning expert that has no knowledge



of the internals of the steps or items. While the specification determines if a
step will execute, the output of an optimizing compiler or tuning-expert will in
general determine when each step will execute.

What can we tell just by looking at the textual representation in Section 2.2?
We will consider each of the two step collections in turn. Since the step collec-
tion (createSpan) is prescribed by the tags of <stringTags> and consumes only
items of [input] and since the only producer of these two collections is env, all
the (createSpan) step instances are enabled at the start of execution. Steps in
(processSpan) are prescribed by tags in <spanTags> and consume [span] items.
The only producer of these two collections is the step collection (createSpan).
It might appear that we have to wait for all the (createSpan) steps to complete
before beginning any (processSpan) steps but lets examine the specification a bit
more closely with a focus on the tag components. The scope of a tag component
name is a single statement. If the same name, e.g., stringID is used on both
sides of an arrow, it has the same value. For example, (createSpan: stringID) →
[span: stringID, spanID]; means that the [span] item instance produced has the
same stringID as the step that produced it. [span: stringID, spanID] → (pro-
cessSpan: stringID, spanID); means that the [span] item instance consumed has
the same stringID and spanID as the instance of (processSpan) step that con-
sumed it. This means that there is a data dependence, and therefore an ordering
constraint, between a step instance of (createSpan: stringID) and any step in-
stance of (processSpan: stringID, spanID) with the same stringID. For similar
reasons, there is a control dependence between a step (createSpan: stringID) and
any step (processSpan: stringID, spanID) with the same stringID. This control
dependence is via the tag collection <spanTags: stringID, spanID>. In this par-
ticular application the control and data dependencies leads to exactly the same
ordering constraint. Notice that none of this reasoning has anything to do with
the code within the step or the data structures in the items. In other words, the
tuning expert does not need any knowledge of the domain.

3 Runtime Semantics and Implementations

3.1 Runtime Semantics

As the program executes, instances of tags, items, and steps monotonically accu-
mulate attributes indicating their state. The set of attributes for instances of the
tags, items and steps and the partial ordering in which an instance can acquire
these attributes is shown in Figure 2.

We will not discuss garbage collection here except to say that an item or tag
that has been determined to be garbage is attributed as dead. It is a requirement
of any garbage collection algorithm that the semantics remain unchanged if dead
objects are removed.

The execution frontier is the set of instances that are of any interest at some
particular time, i.e., the set of instances that have any attribute but are not yet
dead (for items and tags) orexecuted (for steps). The execution frontier evolves
during execution.



Fig. 2. Tag, Item, and Step Attributes

Program termination occurs when no step is currently executing and no un-
executed step is currently enabled. Valid program termination occurs when a
program terminates and all prescribed steps have executed. The program is de-
terministic and produces the same results regardless of the schedule within or
the distribution among processors. It is possible to write an invalid program, one
that stops with steps that are prescribed but whose input is not available. How-
ever, altering the schedule or distribution will not change this result. Note that
the semantics allow but do not imply parallel execution. This makes it easier to
develop and debug an application on a uniprocessor.

The Concurrent Collections execution model can be seen as a natural con-
vergence of the data flow and program dependence graph execution models. The
producer-consumer relations established via item collections support a general
data flow execution model, whereas tag collections and prescriptions can be used
to enforce control dependences and correspond to region nodes in program de-
pendence graphs.

3.2 Runtime System Design Space

The CnC semantics outlined in the previous section allow for a wide variety of
runtime systems. They vary along several dimensions: The target architecture
determines the types of parallelism supported and whether the target has shared
or distributed memory. The 3 basic decisions when mapping a given program to
a given architecture include: choice of grain, distribution among computational
resources, scheduling within a computational resource. The runtimes vary de-
pending on whether these decisions are made statically or dynamically. In addi-
tion, a runtime might include additional capabilities such as checkpoint/restart,
speculative execution, demand-driven execution, auto-tuning, etc.

We have explored the following points in the CnC design space:



– distributed memory, static grain, static distribution among address spaces,
dynamic schedule within an address space, on MPI (HP)

– distributed memory, static grain, static distribution among address spaces,
dynamic schedule within an address space, on MPI, with a checkpoint/restart
capability (HP)

– distributed memory, static grain, static distribution among address spaces,
static schedule within and address space, on MPI (HP)

– shared memory, dynamic grain, dynamic distribution among cores, dynamic
schedule within cores, on MPI (GaTech [9])

– shared memory, static grain, dynamic distribution among cores, dynamic
schedule within cores, in X10 (Rice)

– shared memory, static grain, dynamic distribution among cores, dynamic
schedule within cores, on TBB (Intel)

Of the runtimes listed above, the last two represent recent work for targeting
multicore SMPs and are the focus of this paper.

The runtimes above operate on distinct representations. For each represen-
tation, a translator can be used to convert the CnC textual form to that rep-
resentation. We have built a translator for the C/C++ runtime that converts
to the appropriate classes described below. In addition, for each step collection,
it creates a hint, i.e., a template of the step based on information in the graph
specification. The hint for a step specifies the form for the step tag, as well as
the form for its gets and puts. The user fills in the local step computation. For
now, the X10 forms are hand-generated but a similar translator is planned.

3.3 Runtime based on C++ and Threaded Building Blocks

The Concurrent Collection model allows for a wide variety of runtime systems
as described above. The implementations discussed in this paper target shared
memory multi-core processors, and are characterized by static grain choice, dy-
namic schedule and dynamic distribution. It consists of a small C++ class li-
brary built on the Intel R© Threading Building Blocks (TBB) [2]. TBB controls
the scheduling and execution of the program. There are several advantages in
implementing Concurrent Collections on TBB. TBB supports fine-grain grain
parallelism with tasks. TBB tasks are user-level function objects which are sched-
uled by a work-stealing scheduler. A work-stealing scheduler provides provably
good performance for well-structured programs; the TBB scheduler is inspired
by Cilk [1]. TBB also supports a set of concurrent containers, including vec-
tors and hash-maps. These provide functionality similar to the containers in the
Standard Template Library [12], and they also permit fast concurrent access. Fi-
nally, TBB provides a scalable concurrent memory allocator [6], which addresses
a common bottleneck in parallel systems.

Classes represent the Concurrent Collection objects. A Graph class repre-
sents the program; it contains objects that represent the steps, items, and tags
and their relationships. A step is represented as a user-written C++ function
wrapped in a function object. When a tag that prescribes a step is created, an



instance of the step functor is created and mapped to a TBB task. Get and Put
APIs enable the user function to read and write item instances. The runtime
provides classes to represent the three types of collections in a Concurrent Col-
lections program (TagCollection, StepCollection, and ItemCollection). A Tag-
Collection maintains a list of all the StepCollections that it prescribes. When
a TagCollection Put method is called with a tag, a StepInstance is created for
each the prescribed StepCollections. These StepInstances are mapped into TBB
tasks and scheduled. Data items are created by calling an ItemCollection Put
method with a value and an associated tag. Items are retrieved by calling an
ItemCollection Get method with a tag. The data items for each ItemCollection
are maintained in a TBB hash-map, accessed by tag.

We schedule StepInstances speculatively, as soon as they are prescribed by a
tag. When a StepInstance calls an ItemCollection Get method with a tag, the
value associated with the tag may have not yet been created, i.e., it may not
have the attribute inputs-available and therefore may not yet have the attribute
enabled. If this is the case, we queue the StepInstance on a local queue associated
with the tag, and release it to the TBB scheduler when the value associated
with the tag is Put by another step. When we re-schedule the StepInstance, we
restart it from the beginning; here we exploit the functional nature of Concurrent
Collection steps. Notice that each StepInstance attempts to run at most once
per input item.

3.4 Runtime based on Habanero-Java

CnC construct Translation to HJ

Tag point object (unchanged from X10)
Prescription async or delayed async

Item Collection java.util.concurrent.ConcurrentHashMap

put() on Item Collection Nonblocking put() on ConcurrentHashMap

get() on Item Collection Blocking or nonblocking get() on ConcurrentHashMap

Table 1. Summary of mapping from CnC primitives to HJ primitives

In this section, we discuss our experiences with an implementation of the
CnC programming model in the Java-based Habanero-Java (HJ)1 programming
language being developed in the Habanero Multicore Software Research project
at Rice University [5] which aims to facilitate multicore software enablement
through language extensions, compiler technologies, runtime management, con-
currency libraries and tools. The HJ language is an extension to v0.41 of the X10
language described in [3]. The X10 language was developed at IBM as part of the
PERCS project in DARPA’s High Productivity Computing Systems program.
The initial versions of the X10 language (up to v1.5) used Java as its underlying
sequential language, but future versions of X10 starting with v1.7 will move to
a Scala-based syntax [13] which is quite different from Java.

Some key differences between HJ and v0.41 of X10 are as follows:

1
Habanero-C++, a C++ based variant of this language, is also in development.



– HJ includes the phasers construct [11], which generalizes X10’s clocks to
unify point-to-point and collective synchronization.

– HJ includes a new delayed async construct, which is described below in more
detail.

– HJ permits dynamic allocation of places.
– HJ extends X10’s atomic construct so as to enable enforcement of mutual

exclusion across multiple places.

Since HJ is based on Java, the use of certain primitives from the Java Concur-
rency Utilities [10] is also permitted in HJ programs, most notably operations on
Java Concurrent Collections such as java.util.concurrent.ConcurrentHashMap
and on Java Atomic Variables.

One of the attractive properties of the CnC model is that it has a very small
number of primitives. We were pleasantly surprised to see how straightforward it
has been to map CnC primitives to HJ, as summarized in Table 1. The following
subsections provide additional details for this mapping.

Tags We used the X10 point construct to implement Tags. A point in X10 is an
integer tuple, that can be declared with an unspecified rank. A multidimensional
tag is implemented by a multidimensional point.

Prescriptions We have optimized away all prescription tags in the HJ imple-
mentation. When a step needs to put a prescription tag in the tag collection,
we perform a normal async or a delayed async for each step prescribed by that
tag. The normal async statement, async 〈stmt〉, is derived from X10 and causes
the parent activity to create a new child activity to execute 〈stmt〉. Execution
of the async statement returns immediately i.e., the parent activity can proceed
immediately to its next statement.

The delayed async statement, async (〈cond〉) 〈stmt〉, is similar to a normal
async except that execution of 〈stmt〉 is guaranteed to be delayed until after the
boolean condition, 〈cond〉, evaluates to true. Section 3.4 outlines how delayed
async’s can be used to obtain more efficient implementations of tag prescriptions,
compared to normal async’s.

Item Collections We use the java.util.concurrent.ConcurrentHashMap

class to implement item collections. Our HJ implementation of item collections
supports the following operations:

– new ItemCollection(String name): create and return a new item collec-
tion. The string parameter, name, is used only for diagnostic purposes.

– C.put(point p, Object O): insert item O with tag p into collection C.
Throw an exception if C already contains an item with tag p.

– C.awaitAndGet(point p): return item in collection C with tag p. If neces-
sary, the caller blocks until item becomes available.

– C.containsTag(point p): return true if collection C contains an item with
tag p, false otherwise.

– C.get(point p): return item in collection C with tag p if present; return
null otherwise. The HJ implementation of CnC ensures that this operation



is only performed when tag p is present i.e., when C.containsTag(point p)

= true. Unlike awaitAndGet(), a get() operation is guaranteed to always
be nonblocking.

Put and Get Operations A CnC put operation is directly translated to a put

operation on an HJ item collection, but implementing get operations can be
more complicated. A naive approach is to translate a CnC get operation to an
awaitAndGet operation on an HJ item collection. However, this approach does
not scale well when there are a large number of steps blocked on get opera-
tions, since each blocked activity in the current X10 runtime system gets bound
to a separate Java thread. A Java thread has a larger memory footprint than
a newly created async operation. Typically, a single heavyweight Java thread
executes multiple lightweight async’s; however, when an async blocks on an
awaitAndGet operation it also blocks the Java thread, thereby causing addi-
tional Java threads to be allocated in the thread pool[4]. In some scenarios, this
can result in thousands of Java threads getting created and then immediately
blocking on awaitAndGet operations.

This observation lead to some interesting compiler optimization opportunities
of get operations using delayed asyncs. Consider a CnC step S that performs
two get operations followed by a put operation as follows (where Tx, Ty, Tz are
distinct tags):

S: { x := C.get(Tx); y := C.get(Ty); z := F (x, y); C.put(Tz, z); }

Instead of implementing a prescription of step S with tag TS as a normal async
like “async S(TS)”, a compiler can implement it using a delayed async of the
form “async await(C.containsTag(Tx) && C.containsTag(Ty)) S(TS)”. With
this boolean condition, we are guaranteed that execution of the step will not
begin until items with tags Tx and Ty are available in collection C.

4 Case Study: Cholesky

4.1 Cholesky factorization algorithm

In this case study we describe a numerical algorithm, Cholesky factorization on
CnC and discuss in detail the various challenges involved in exposing the poten-
tial parallelism in the application to the CnC runtime for effective mapping and
scheduling on the target architecture. Cholesky factorization takes in a symmet-
ric positive definite matrix as input which is factorized into a lower triangular
matrix and its transpose.

The Cholesky factorization algorithm can be divided into six steps and the
operations on the elements inside each step is independent of each other and this
maps well onto the CnC model. We also explore optimizations such as tiling to
improve performance.

Algorithm 1 is the pseudo-code for tiled Cholesky factorization. It can be
derived by equating corresponding entries of A and LLT and generating them



in order.The input is a symmetric positive definite matrix A and Aij represents
a block of size bxb where b = n ∗ p. We iterate over the outer loop from 0 to p-1.
The computation can be broken down into three steps. The step (S1) performs
unblocked Cholesky factorization of the symmetric positive definite tile Akk of
size bxb producing a lower triangular matrix tile Lkk. Step (S2) is used to apply
the transformation computed by the step (S1) on the tile Ajk by means of a
triangular system solve. Finally the step (S3) is used to update the trailing
matrix by means of a matrix-matrix multiply.

Algorithm 1: Tiled Cholesky Factorization algorithm pseudo-code

Input: Input matrix: A, Matrix size: nxn where n = p ∗ b for some b which
denotes the size of the tile

Output: Lower triangular matrix: L

1 for k = 0 to p − 1 do

2 S1(Akk, Lkk);
3 for j = k + 1 to p − 1 do

4 S2(Lkk, Ajk, Ljk);

5 for j = k + 1 to p − 1 do

6 for i = k + 1 to j do

7 S3(Ljk, Lik, Aij);

4.2 CnC graphical notation

Figure 3 represents how the Cholesky factorization algorithm maps onto the
CnC graphical notation. (The actual graph is connected. The graph is shown
in two parts for easier reading.) Figure 3(a) represents the control flow of the
algorithm. The three steps, (S1), (S2) and (S3), discussed in Alg. 1 map onto
the three steps denoted as ovals. Item, [n] represents the matrix size and [n]
is input from the user environment. The tag t0 is a singleton tag to start the
computation. Step (k) generates the tag collection <t1> required for step (S1).
Step (kj) converts tag collection <t1> to tag collection <t2>. Step (kji) converts
Tag collection <t2> to tag collection <t3>. The tag collections <t1>, <t2> and
<t3> prescribe steps (kj), (S1); (kji), (S2); and (S3) respectively.

Figure 3(b) represents the data flow in the algorithm. We take in item [Lkji]
at k=0 as input from the user environment. We then perform Cholesky factor-
ization and the output lower triangular matrix is again written back into the
user environment represented as outward pointing arrows.

4.3 Preliminary Experimental Results

The graph in figures 3(a) and 3(b) represent a static graph and the user reasons
only about the sequential flow of control and data in the application. Cholesky



p

k

kj

kji

t0

t1

t2

t3

S1

S2

S3

(a) Control flow notation

LkjiS1 S2

S3

b

(b) Data flow notation

Fig. 3. CnC graphical notation of control and data flow in Cholesky factorization

Cholesky Speedup (n = 2000)

No of threads

0 2 4 6 8 10

Sp
ee

du
p

0

2

4

6

8

10

b = 2000
b = 1000
b = 500
b = 250
b = 125
b = 50
b = 25

Fig. 4. Speedup results for TBB implementation of 2000×2000 Cholesky Factorization
CnC program on an 8-way (2p4c) IntelR© dual Xeon Harpertown SMP system. The
running time for the baseline (1 thread, tile size 2000) was 24.911 seconds



Cholesky Speedup (n = 2000)

No of threads

0 2 4 6 8 10

Sp
ee

du
p

0

2

4

6

8 b = 2000
b = 1000
b = 500
b = 250
b = 125
b = 50
b = 25

Fig. 5. Speedup results for Habanero-Java implementation of 2000×2000 Cholesky Fac-
torization CnC program on an 8-way (2p4c) IntelR© dual Xeon Harpertown SMP system.
The running time for the baseline (1 thread, tile size 2000) was 28.346 seconds

is an interesting example because its performance is impacted by both paral-
lelism (number of cores used) and locality (tile size), thereby illustrating that
both considerations can be taken into account when tuning a CnC program. We
implemented the Cholesky example using the TBB-based runtime described in
Section 3.3. Figure 4 shows the relative speedup obtained by using multiple cores
on an 8-way Intel R© dual Xeon Harpertown SMP system.

We also implemented the Cholesky example using the Habanero-Java runtime
described in Section 3.4. Figure 5 shows the relative speedup obtained by using
multiple cores on the same SMP system as in Figure 4. Though the HJ runtime
is implemented in Java, the baseline sequential runtime for this version is only
14% slower than that of the TBB version. Further analysis of JVM overheads,
such as dynamic compilation and garbage collection, is needed to determine why
the scalability of the HJ version is poorer than the TBB version for this example.
However, these preliminary results demonstrate that the CnC model is amenable
to portable implementation on different parallel runtime systems.

5 Conclusions and Future Work

In this paper, we introduced the Concurrent Collections programming model,
which builds on past work on TStreams [8] and discussed its advantages in sepa-



ration of concerns between the domain expert, and the automatic/human tuning
expert which may in fact be realized in the form of a static or dynamic optimiz-
ing compiler. We described two implementations of the Concurrent Collections
programming model. One is Intel R© Concurrent Collections for C/C++ based
on Intel R© Threaded Building Blocks. The other is an X10-based implementation
from the Habanero project at Rice University. We compared the implementations
by showing the results achieved on multi-core SMP machines when executing the
same Concurrent Collections application, Cholesky factorization, in both these
approaches. The scalability of these early results attest to the robustness of the
CnC model and its ability to be mapped efficiently to multiple runtime systems.

References

1. Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work-stealing. In Proceedins of the 35th Annual IEEE Conference on
Foundations of Computer Science, 1994.

2. Intel Corporation. Thread building blocks.
http://www.threadingbuildingblocks.org/.

3. P.Charles et al. X10: an object-oriented approach to non-uniform cluster comput-
ing. In Proceedings of OOPSLA ’05, pages 519–538, New York, NY, USA, 2005.
ACM Press.

4. R.Barik et al. Experiences with an smp implementation for x10 based on the
java concurrency utilities. In Workshop on Programming Models for Ubiquitous
Parallelism (PMUP), held in conjunction with PACT 2006, September 2006.

5. Habanero multicore software research project web page. http://habanero.rice.edu.
6. Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C.

Hertzberg. Mcrt-malloc a scalable transactional memory allocator. In Proceedings
of the 2006 ACM SIGPLAN International Symposium on Memory Management,
pages 74–83, June 2006.

7. Intel (r) concurrent collections for c/c++.
http://softwarecommunity.intel.com/articles/eng/3862.htm.

8. Kathleen Knobe and Carl D. Offner. Tstreams: A model of parallel computation
(preliminary report). Technical Report HPL-2004-78, HP Labs, 2004.

9. Hasnain Mandviwala. Capsules: Expressing composable computations in a parallel
programming model. PhD thesis, Georgia Institute of Technology, June 2008.

10. Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. Java Concurrency in Practice. Addison-Wesley Professional, 2005.

11. Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers:
a unified deadlock-free construct for collective and point-to-point synchronization.
In ICS ’08: Proceedings of the 22nd annual international conference on Supercom-
puting, pages 277–288, New York, NY, USA, 2008. ACM.

12. Bjarne Stroustrup. The C++ Programming Language, Third Edition. Addison-
Wesley, 1997.

13. X10 v1.7 language specification. http://x10.sourceforge.net/docs/x10-170.pdf.


