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Abstract—This paper reports our experiences in reimple-

menting an entry-level graduate course in high-performance

parallel computing aimed at physical scientists and engineers.

These experiences have directly informed a significant redesign

of a junior/senior undergraduate course, Introduction to High-
Performance Computing (CS 4225 at Georgia Tech), which we

are implementing for the current Spring 2012 semester. Based

on feedback from the graduate version, the redesign of the

undergraduate course emphasizes peer instruction and hands-

on activities during the traditional lecture periods, as well as

significant time for end-to-end projects. This paper summarizes

our anecdotal findings from the graduate version’s exit surveys

and briefly outlines our plans for the undergraduate course.
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I. INTRODUCTION AND BRIEF HISTORY

The demand for high-performance computing (HPC)
among the general science and engineering population at
Georgia Tech is on the rise. Figure 1 summarizes this trend,
showing how enrollments in just the core HPC classes1 have
steadily increased since the 2006-7 academic year (AY).2
Where 62 students took two graduate-level courses in AY
2006-7, 146 students are taking four courses in AY 2011-12,
including both graduate and undergraduate course offerings.3
As we explain below, the audiences for these courses have
diverse backgrounds and needs. The major question with
which this paper is concerned is how to implement the
courses in a way that can best meet those needs.

As is true elsewhere, computer-based modeling and simu-
lation plays a prominent role in the science and engineering
research and education at Georgia Tech. As such, the new
HPC offerings came about in part because of the creation
of a new interdisciplinary academic department, the School
of Computational Science and Engineering (CSE),4 which
at present offers its own masters and Ph.D. degree programs
and faculty lines. This department is distinct from those

1“Core HPC” excludes the usual courses in computer architecture,
compilers, programming languages, numerical algorithms. It also excludes
specialty courses in parallelism, such as a multicore and GPU video game
course and a variety of graduate-level topics-driven seminars.

2AY begins with a Fall semester an ends with a Spring semester.
3There is typically a very small overlap of students taking more than one

of these four courses.
4See: http://www.cse.gatech.edu. The School of CSE was created during

Richard A. DeMillo’s tenure as dean of the College of Computing [1].
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Figure 1. HPC enrollment trends at Georgia Tech. All courses are
graduate-level, except Intro to HPC (UG*), an undergraduate section of
the corresponding graduate course; and Intro to HPC (UG), a completely
separate undergraduates-only course.

in computer science, mathematics, and the physical and
biological science and engineering disciplines. Thus, where
one graduate HPC course (labeled HPC Sci./Eng. in Fig. 1)
used to serve all students interested in HPC, there are now
two such courses: the same course5 targeting the broad cross-
section of scientists and engineers on campus; and a new
Intro to HPC,6 which satisfies a core breadth requirement in
the CSE program and whose syllabus has a stronger parallel
algorithms theory component. Separate from these courses,
the faculty is developing additional transition courses, both
to help non-computing specialists learn enough computer
science to take HPC and to help computer scientists learn
enough parallel numerical and combinatorial methods to
apply HPC to disciplinary science.

The overall demand for an HPC skillset is trickling down
to the undergraduate level. In response, the faculty created
in AY 2008-9 a new Intro to HPC for undergraduates.7
This course was a special section of the graduate course

5Now known as CSE 6230; see: http://bit.ly/gtcse6230 [2].
6Known as CS 6220 and CSE 6220; see: http://www.cc.gatech.edu/

⇠gbiros/teaching/6220-s10.html.
7Known as CS 4225; see: http://j.mp/gtcs4225 [3].

http://www.cse.gatech.edu
http://bit.ly/gtcse6230
http://www.cc.gatech.edu/~gbiros/teaching/6220-s10.html
http://www.cc.gatech.edu/~gbiros/teaching/6220-s10.html
http://j.mp/gtcs4225


in AY 2008-9 and AY 2010-11, and an entirely separate
course in AY 2009-10 and AY 2011-12. (Faculty availability
drives this schedule.) In the current separate offering for
Spring 2012, exactly half of the twenty students enrolled are
computer science majors; the other half come from physics,
materials, chemical engineering, electrical, and aerospace
engineering. Notably and perhaps unsurprisingly, enrollment
is higher in the separate undergraduate course than the
undergraduate section of the graduate offering (in Fig. 1,
17 and 20, versus 12 and 9).

The first three authors used the Fall 2011 graduate HPC
Sci./Eng. course as an experiment to prototype a variety of
educational activities. These activities now form the heart of
the current separate Spring 2012 undergraduate HPC course,
taught by the first and last authors. This paper summarizes
our Fall 2011 experience and how it informed our Spring
2012 plan. In particular, the Spring 2012 course will try
to engage undergraduates with intensive hands-on projects,
labs, and lectures using peer activities [4], [5], based on the
exit-survey results of the Fall 2011 prototype.

Importantly, this paper is only an experience report, rather
than any sort of controlled study that proves or disproves
a particular parallel computing teaching methodology as
superior to some other. Furthermore, we report on a graduate
course, from which we have designed the undergraduate
course being implemented this semester. We hope that,
if invited to participate in the EduPar workshop, we can
interact with others on such issues as well as report on the
undergraduate version of the course being offered now.

II. GRADUATE HPC FOR SCIENTISTS AND ENGINEERS

The structure of the Fall 2011 graduate course, HPC:
Tools and Applications (CSE 6230 [2]), departed from the
largely traditional lecture + homework + project + exam-
based format of previous instances. This course is designed
to be accessible to a broad audience of scientists and engi-
neers; as such, it de-emphasizes theoretical aspects covered
in the core CSE Intro to HPC class in favor of practical
topics, such as programming and analysis and tuning of
parallel programs. This section reviews the similarities and
differences, and analyzes the exit survey given at the end
of the course. These results were used to re-design the
undergraduate course that we describe in Sec. III.

Regarding demographics of the course, there were a total
of 49 students enrolled, about two-thirds of whom were mas-
ters degree students. About 60% of these students were from
computer science, with the remaining from math, biophysics;
electrical, mechanical, aerospace, and nuclear engineering;
and operations research. We also gave a “calibration quiz”
on the first day of class to get a sense of the students
understanding of basic sequential programming, algorithmic
complexity, and microprocessor architectures. Although all
the students did well on a programming exercise (writing
a function in any language), only 20% knew that n1.1

grows faster asymptotically than n log2 n.8 In addition, less
than a third of students were able to answer the question
about microprocessor pipelines. These results implied that
our course needed to review algorithm analysis and give a
crash course on the fundamentals of sequential computer
architecture.

A. Similarities to prior offerings

As in the past, the three-credit course met twice per week
for 80 minutes each session over a total of 15 weeks. Each
student took a final exam (with no other exams) and spent the
last third of the course working on an independent project
of their own choosing and design, possibly with a partner.
The textbook was Levesque’s [6], though it served primarily
as a reference and supplemental reading material since it
does not cover many of the preceding topics. In terms of
breadth and depth of topics, the course’s scope is largely
the same as earlier versions, with the notable exception of
omitting parallel I/O and debugging, other than a few cursory
mentions.

The first 8-9 weeks focused on “core” topics: analysis
basics, such as Amdahl’s Law, Little’s Law, and the no-
tion of strong vs. weak scaling; algorithm design includ-
ing PRAM-style work-span analysis, distributed latency-
bandwidth communication model, the external memory
model, and computational intensity analysis; programming
models, including MPI and OpenMP; parallel architectures,
including distributed memory, shared memory multicore,
manycore (i.e., GPU), and multithreaded designs; single-
core architecture, including pipelining, out-of-order super-
scalar execution, and cache design; and low-level tuning
techniques, such as short-vector (SSE) programming. The
remaining 6-7 weeks cover advanced topics, which in Fall
2011 consisted of a survey of advanced compiler topics (i.e.,
the polyhedral model) and experimental programming mod-
els, namely, UPC, Coarray Fortran, Chapel, and Concurrent
Collections.

B. Differences from prior offerings

There were several key differences from prior instances
of the course.

A highly structured “end-to-end” project: The course
has always included an independent self-directed project,
carried out during the second half of the term, with ad-
ditional homework assignments during the first half. In this
offering, we replaced the homework assignments with the
following end-to-end project, carried out in teams of two.
This first project, which we refer to as Project 1, asks
students to implement a hybrid message-passing and shared-
memory matrix multiply that is explicitly tuned for the
memory hierarchy and x86 processors, including prefetching

8Most students plugged in what they thought was a large value of n.
However, the cross-over point does not occur until n ⇡ 1018, which
suggests students lack imagination that something might reach exascale.



and SSE. (The self-directed independently chosen project
became Project 2.) The goal of Project 1 was to give students
practical experience in how to approach performance analy-
sis and tuning from top-to-bottom. We chose matrix multiply
because the computation is regular and the analysis results
relatively well-established, thereby offering a clear way to
connect theory and practice—well, in theory at least.

The students began by implementing a basic distributed
memory code based on the SUMMA algorithm. The initial
naı̈ve distributed SUMMA implementations that they im-
plemented initially ran at a mere 1% of peak. Through a
series of staged checkpoints, the students gradually added
more and more layers to their codes. By the end, the
most successful students had implemented a complete hybrid
MPI+OpenMP matrix multiply tuned for the memory hier-
archy and underlying processor architecture so as to achieve
over 75% of system peak. In addition, about half the class
achieved 40-50% or more of peak.

Hands-on labs: The latter part of the class covered ex-
perimental programming models. As a matter of philosophy,
we felt students would not really develop a concrete sense
for the new models unless they were required to try them.
However, since the students were supposed to spend their
out-of-class time on their self-directed course projects, we
felt adding more programming assignments would create too
much work.

Instead, we devoted 1 week per programming model,
using the first class meeting to give an overview of the
model, and using the second class meeting to carry out
a “hands-on” lab, in which students would be asked to
implement and analyze some computation in the model.
During the lab, the three instructors would circulate among
the students to answer questions. The first of these labs took
place during the second week of class, in order to get stu-
dents up and running on the cluster, which required learning
how to create and submit batch jobs. The remaining labs
took place during the last part of the course, and included
CUDA/GPU programming, as well as a range of models
as mentioned above, which were developed as part of the
DARPA HPCS and UHPC programs. Of course, it is hardly
possible in two 80-minute sessions to become fluent in a
model, especially with only one 80-minute session’s worth
of actual programming. However, since the students would
have at this point already had relatively deep exposure to
parallel programming from the end-to-end SUMMA project,
we believed these sessions had the opportunity to be quite
productive.

PeerWise Q&A: Since the course focused on practical
aspects of parallel programming, the only formal and in-
dividualized evaluation was the final exam. Thus, we felt
that we needed some additional activity to reinforce formal
aspects of the course material. We chose to do so using
PeerWise, an online system in which students create anony-
mous multiple choice test questions, and answer questions

created by their peers [5]. The online system keeps track of
who answers which questions and has a number of abstract
awards (e.g., “Most Questions Correctly Answered”) to
encourage participation. There are also mechanisms that
allow each student to identify challenging or interesting
questions and to provide anonymous feedback to his or
her peers. We asked students to create five such questions
during the semester and made these a part of their grade. As
an additional incentive to participate and use the PeerWise
system to study, we told students of our intent to base about
half of the final exam on these questions (suitably modified).

C. Survey responses

The university asks students to complete a standard survey
at the end of the course. From our class, 42 of the 49
students completed this survey. On the overall question
of, “Considering everything, this was an effective course,”
students gave the course an overall rating of 4.3 out of
5.0, where a 4.0 or a 5.0 indicate “agree” and “strongly
agree,” respectively, with no one selecting “disagree” or
“strongly disagree.”9 However, this survey is also generic to
all university courses and therefore does not indicate what
students did or did not like about our course specifically.

Therefore, just prior to submission of Project 2 and
the final exam, we also administered our own independent
and anonymous survey. Thirty students responded. Of our
survey’s many questions, the one that best summarizes their
overall reaction to the course was, “How much did you learn
from . . . ?” Students answered by indicating positive (“a
lot”), moderate (“a fair amount”), or negative (“very little”)
responses to each of the course’s main teaching mechanisms:
lectures, hands-on labs, the end-to-end project, the course
textbook, and individual interaction with the instructors.

Figure 2 summarizes these responses, showing that the
respondents felt overwhelmingly that they learned the most
from the end-to-end Project 1. Answers to other questions
(not shown) show that students felt Project 1 was by-
and-large “very interesting,” “highly relevant,” and “well-
designed,” even though they also nearly universally agreed
that it was “too much work.”

However, Fig. 2 also shows that students perceived labs,
lectures, individual interaction with instructors moderately,
and by comparison to the project, deemed these mechanisms
as decidedly less effective. The textbook was not assessed
favorably as a learning tool, though we remind the reader
that we used it mostly as a supplement to the course.

Regarding hands-on labs, the students’ overall moderate
reaction as suggested above may be more nuanced, as
Fig. 3 indicates. The vast majority of respondents agreed
that the labs were “beneficial,” “interesting,” “relevant,” and
“well-designed.” However, these respondents also felt more

9Values for other courses that semester at the university were not
available for comparison at the time of this writing.
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Figure 3. Survey results, overall lab evaluation: The labs were . . . , on a 3-point scale of “Agree,” “Neutral,” and “Disagree.”

neutral or even negative on whether the labs were either
too hard or could be completed within the lab period. We
also asked about specific lab activities (not shown). Students
gave strongly positive responses to the labs on MPI and
CUDA; slightly positive responses to labs on PolyOpt10 and
UPC; and slightly negative responses to labs on Chapel
and Concurrent Collections. The latter two involved little
or no programming; instead, students only performed some
analysis (both reading of code and running benchmarks),
which perhaps dampened these labs’ appeal.

10A source-to-source parallelization and locality-enhancing compiler
based on the polyhedral models. See: http://www.cse.ohio-state.edu/
⇠pouchet/software/pocc/

D. Project vs. the final exam

The surveys indicate that the students appreciated the
projects, especially the end-to-end Project 1. Indeed, the
Project 1 implementations achieved very good performance
as noted previously, and the grade assigned for Project 1
was based partly on the actual fraction of peak achieved.
An interesting question is whether this experience with
Project 1 is also reflected in the course’s main individual
assessment mechanism, namely, the final exam. The final
exam questions emphasize conceptual and theoretical ideas,
asking the students to generalize beyond the programming-
oriented projects.

Figure 4 compares the grade received on Project 1 (x-axis)

http://www.cse.ohio-state.edu/~pouchet/software/pocc/
http://www.cse.ohio-state.edu/~pouchet/software/pocc/
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Figure 4. Comparison of Project 1 grades (x-axis) with those of the final
exam (y-axis). Each point represents an individual student. The markers
indicate the final letter grade assigned for the course. The ‘F’ grades actually
represent incomplete grades due to extenuating circumstances at the time
of the final.

with the final exam score (y-axis). The mean on the final was
about a 60%. Had the Project 1 and final exam grades been
perfectly correlated, they would lie parallel to the diagonal
line. However, we see only a weak relationship (correlation
coefficient is 0.5). This lack of strong correlation owes
partly to the fact that the Project 1 grades are compressed
into a narrow range, mostly between 80% (an equivalent
C+/B- letter grade) and 100% (A+). In any case, we do not
have an explanation for the Project 1 vs. final exam grade
discrepancy. However, we do note anecdotally that several
students who came to look at their exam results commented
that, since there were no other tests or quizzes during the
semester, they felt a little surprised by the questions and at
how relatively poorly they performed. Though we cannot
explain this occurrence, it is clear that the perceived value
of the hands-on experience simply did not translate directly
into a mastery of the more abstract concepts.

III. INTRO TO HPC FOR UNDERGRADS

The results summarized in Sections II-C and II-D implied
a number of considerations for the undergraduate HPC
course, which we are implementing in the current semester
at the time of this writing (Spring 2012). (The syllabus is
available at: http://j.mp/gtcs4225.)

• Students highly valued the experience from the end-
to-end project. Thus, a strong hands-on component is
desirable though care is needed to ensure it is not an

excessive amount of work.
• However, hands-on experience did not translate directly

into a mastery of abstract or higher-level concepts.
Thus, more direct reinforcement of such concepts is
necessary.

• The students were not very interested in the exper-
imental programming models. Perhaps it is because
we covered too many and none in any depth. Thus,
focusing on just a few models but providing more
experience and opportunity to use them might be a
better approach.

• The students did not perceive above-average value from
lectures and individual interaction with the instructors.
Thus, mechanisms to increase this value are warranted.

• Students perceived little value in the textbook, which
we emphasize we had used only in a peripheral way.
If we require a textbook at all, it should be better and
more directly integrated into the course.

From these observations, we have designed the undergradu-
ate course to reuse the positive aspects of the graduate course
while addressing its shortcomings.

The logistics of the course and background of its students
as of this writing are as follows. The enrollment is capped at
20 students and is currently full. The course is worth three-
credit hours and meets three days per week for 50 minutes
each day. The class has only undergraduates, half of whom
are computer science majors and the rest of whom come
from other science and engineering disciplines. Based on
an entry survey, only two have had any prior exposure to
parallel computing.

Regarding the course design, we first are choosing to
preserve the strong hands-on focus of the graduate course.
However, we use extended labs to accomplish this goal. In
this format, we devote one day of class time per week to
a hands-on lab assignment, part of which is due at the end
of class and the rest of which is completed as “homework.”
Thus, students are essentially forced to start assignments
in-class and therefore keep better pace with the course
material. Also, during the in-class time, we circulate and
guide students through directed exercises. By devoting in-
class time to this activity, we hope to increase the frequency
and quality of face-to-face interaction time between the
students and ourselves, as well as reduce the perception
that the programming assignments require “too much work”
outside of class.

Students of the graduate course cited the end-to-end
experience of their Project 1 assignment as particularly
valuable. Thus, we have sequenced the extended lab topics in
a similar way, starting with message passing algorithms and
codes to which we add shared memory, memory hierarchy
optimizations, GPU acceleration, and low-level CPU and/or
GPU tuning. We also spend several extended labs working
with one programming model, to help increase the depth of
experience in that model. Our programming model choices

http://j.mp/gtcs4225


this term are MPI, OpenMP, Cilk Plus, and CUDA, with
about four weeks of instruction in each.

To increase the value of lectures and reinforce high-level
abstract concepts, we use a variant of the peer instruction for-
mat [4]. In this format, we give mini-quizzes, or checkpoints,
during certain points in each lecture. Students first submit
an answer to a quiz question individually; they then have
an opportunity to discuss their answer with their neighbor.
We allow the students to resubmit their answer based on
the peer discussion. These quizzes happen online in real-
time, so that the instructors can monitor the responses and
adjust the lecture accordingly to address confusing material.
The checkpoints are also graded to create an incentive to
pay attention during class and actually try to get the right
answer.

To facilitate even more communication among the stu-
dents as well as with the instructors outside of class, we are
using Piazza11 as our online discussion forum.

Lastly, we have adopted the textbook by Hager and
Wellein [7]. This textbook has more material directly of use
in the course, based on the course’s syllabus, and addresses
some criticisms students expressed in the graduate course.
Though the undergraduate class has not in years past had a
textbook, students in the graduate class expressed a desire
to have an organized offline reference.

IV. RELATION TO THE NSF/TCPP INITIATIVE?

The preceding discussion does not shed direct light on
how to approach teaching of parallel computing concepts in
the core computing curriculum, as outlined in the NSF/TCPP
Curriculum Initiative (CI for short) [8].

That said, at least one aspect of our course is worth noting
in relation to the CI: our course may actually “invert” several
of the ordering and Bloom classifications of topics that the
CI implies. In particular, we began with quick introductions
to concepts of work and span for algorithm design, but im-
mediately after that—starting in the second day of classes—
we introduced distributed memory algorithms. Distributed
memory exposes the need for explicit communication. This
choice inverts the usual approach of focusing on shared
memory parallelism, which hides communication and is
therefore perceived as “easier” than distributed memory and
(later) memory hierarchy-aware programming. However, it
is our opinion that establishing strong foundations in explicit
communication and locality is as important (if not more
so) as parallelism itself. We are trying this approach in the
undergraduate course as well.
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