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Abstract—Neural networks have emerged as powerful tools
across various domains, exhibiting remarkable empirical per-
formance that motivated their widespread adoption in safety-
critical applications, which, in turn, necessitates rigorous formal
verification techniques to ensure their reliability and robustness.
Tight bound propagation plays a crucial role in the formal
verification process by providing precise bounds that can be
used to formulate and verify properties such as safety, robust-
ness, and fairness. While state-of-the-art tools use linear and
convex approximations to compute upper/lower bounds for each
neuron’s outputs, recent advances have shown that non-linear
approximations based on Bernstein polynomials lead to tighter
bounds but suffer from scalability issues. To that end, this
paper introduces BERN-NN-IBF, a significant enhancement of
the Bernstein-polynomial-based bound propagation algorithms.
BERN-NN-IBF offers three main contributions: (i) a memory-
efficient encoding of Bernstein-polynomials to scale the bound
propagation algorithms, (ii) optimized tensor operations for
the new polynomial encoding to maintain the integrity of the
bounds while enhancing computational efficiency, and (iii) tighter
under-approximations of the ReLU activation function using
quadratic polynomials tailored to minimize approximation errors.
Through comprehensive testing, we demonstrate that BERN-NN-
IBF achieves tighter bounds and higher computational efficiency
compared to the original BERN-NN and state-of-the-art methods,
including linear and convex programming used within the winner
of the VNN-COMPETITION.

I. INTRODUCTION

In recent years, Neural Networks (NNs) have emerged as

indispensable tools across a myriad of applications, ranging

from computer vision to natural language processing, revolu-

tionizing fields such as healthcare, finance, and autonomous

systems. The remarkable success of NNs is attributed to their

ability to learn complex patterns and representations from vast

amounts of data, leading to state-of-the-art performance in

various tasks. However, the increasing reliance on NNs in

safety-critical domains raises significant concerns regarding

their trustworthiness, robustness, and reliability. As NNs are

deployed in applications where incorrect decisions can have

severe consequences, there is a pressing need for rigorous

verification techniques to ensure their behavior aligns with

safety requirements and user expectations. The importance of

NN verification has been emphasized in numerous studies [1],

[2], [3] highlighting the potential risks associated with the

deployment of unverified models in critical systems.
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This paper aims to delve into the challenges and opportunities

in neural network verification, focusing on the necessity of

employing tight-bound propagation techniques to enhance

the reliability and robustness of neural network systems. In

particular, state-of-the-art tools for NN verification hinge on

the precise propagation of input domain bounds to the outputs

of the NN. This bound propagation process is challenged

by the networks’ non-linear and non-convex nature, making

exact output bound determination an NP-hard problem [4].

Previous methodologies in the literature can be classified into

three categories to harness the inherent NP-hardness of the

problem. The first category leaned heavily on linear relaxation

of the nonlinear activation functions [5], [6], [7], [8], [9],

[10], [11], [12] or reachability analysis based on linear/convex

relaxation [13], [14], [15], [16], [17], [18], [19]. While linear

and convex relaxations are easy to compute, these techniques

result in loose bounds that deteriorate with the NN depth,

which diminishes their effectiveness.

The second category detours from traditional practices by

harnessing non-convex approximations of the NN nonlinear

activation function [20], [21]. In particular, the work in [20],

[21] harnesses Bernstein polynomials’ power for more accurate

approximations of non-linear activations. Such non-convex

approximation was shown to lead to significant improvement

in terms of approximation errors, but the quest for enhanced

precision and efficiency remained ongoing.

The third category takes a Design-for-Verifiability approach,

focusing on identifying neural networks or non-linear activation

functions that allow for precise and tight analysis of NNs.

Representative of this category is the work presented in [22],

[23], [24]. For example, the work in [24] explores which NN

architectures lead to more scalable verification by identifying

NN properties that improve verification and incentivizing these

properties through a verification loss. The work in [23] exploits

the properties of Bernstein polynomials to design novel non-

linear activation functions that help with the computation of

tight upper/lower bounds of NN’s output efficiently and shift

some of the computational efforts from the verification phase

to the training phase.

This paper introduces BERN-NN-IBF, an improved tool

derived from BERN-NN [20]. BERN-NN-IBF introduces

the implicit Bernstein form (IBF), a novel representation

that employs 2-dimensional tensors for bound propagation,

sidestepping the computational hurdles synonymous with the

n-dimensional tensors used in BERN-NN. Moreover, we have

designed new operations specific to the IBF format, enhancing



essential functions like summations, multiplications, and power,

which are implemented efficiently using specialized CUDA

routines, contributing significantly to the tool’s overall speed.

Finally, we reduce another source of approximation error

by enhancing the coefficients of the quadratic polynomial

used for the under-approximates of the ReLU function. We

achieve the optimal—in the ℓ2 sense—approximation error

by formulating and solving a dedicated optimization problem,

ensuring tighter bounds on the NN’s outputs. This sophisticated

method surpasses the quadratic Bernstein approximation used

in BERN-NN. In summary, our main contributions can be

summarized as follows:

• Accuracy: A novel, optimized technique for determining

the coefficients of a quadratic polynomial, presenting a

more refined under-approximation of the ReLU function

and contributing to the precision of output bounds.

• Memory and Computational Efficiency: The integration

of the implicit Bernstein form (IBF), an enhancement in

simplifying and speeding up bound representation and

propagation.

• Implementation: The introduction of IBF-specific op-

erations, fine-tuning the accuracy and the efficiency of

bound-related calculations.

• The addition of a custom CUDA routine, fast-tracking the

identification of minimum and maximum values within

the IBF structure.

Our extensive evaluations confirm that BERN-NN-IBF not

only outpaces its predecessor BERN-NN but also outperforms

state-of-the-art tools like those used in the winner of the VNN-

COMPETITON [25].

II. NEURAL NETWORK BOUND PROPAGATION USING

BERNSTEIN POLYNOMIALS

Bound propagation in neural networks refers to the process

of estimating upper and lower bounds on the activations of

neurons throughout a ReLU-based Neural Network given a set

of input data. These bounds provide insights into the range

of possible values each neuron’s activation can take, thereby

enabling the characterization of the network’s behavior under

different conditions. In particular, in this paper, we seek to

encode the upper and lower bounds of neuron activations as

high-order polynomials, along with techniques to propagate

these polynomial-based bounds through different layers of

the network. As shown in [20] and visualized in Figure 1,

higher-order polynomial approximations of ReLU functions

outperform state-of-the-art approaches of using linear approx-

imations (e.g., triangulation, crown, and zonotopes) in terms

of approximation errors. Albeit promising, the propagation of

bounds encoded as higher-order polynomials across different

NN layers is computationally challenging compared to linear

approximations. This section reviews the basics of higher-order

polynomial approximation of the Rectified Linear Unit (ReLU)

functions and discusses their challenges.

A. Notation:

We use the symbols N and R to denote the set of nat-

ural and real numbers, respectively. We denote by x =

(

x1, x2, · · · , xn

)

∈ R
n the vector of n real-valued variables,

where xi ∈ R. We denote by In(d, d) =
[

d1, d1
]

× · · ·×
[

dn, dn
]

⊂ R
n the n-dimensional hyperrectangle where

d = (d1, · · · , dn) and d =
(

d1, · · · , dn
)

are the lower and

upper bounds of the hyperrectangle, respectively. For a real-

valued vector x =
(

x1, x2, · · · , xn

)

∈ R
n and an index-

vector K = (k1, · · · , kn) ∈ N
n, we denote by xK

∈ R

the scalar xK = x
k1

1 × . . . × xkn

n . Given two multi-indices

K = (k1, · · · , kn) ∈ N
n and L = (l1, · · · , ln) ∈ N

n, we use

the following notation throughout this paper:

K + L = (k1 + l1, · · · , kn + ln) ,
(

L

K

)

=

(

l1

k1

)

× · · ·×

(

ln

kn

)

,

∑

K≤L

=
∑

k1≤l1

· · ·

∑

kn≤ln

Finally, a real-valued multivariate polynomial p : Rn
→ R is

defined as:

p(x1, . . . , xn) =

l1
∑

k1=0

l2
∑

k2=0

. . .

ln
∑

kn=0

a(k1,...,kn)x
k1

1 x
k2

2 . . . xkn

n

=
∑

K≤L

aKxK ,

where L = (l1, l2, . . . , ln) is the maximum degree of xi for

all i = 1, . . . , n. While the multi-index L depends on the

input dimension n and the polynomial degree, for simplicity

of notation, we drop such dependencies.

B. Bernstein Polynomials as Multi-dimensional tensors:

In this paper, we rely on a class of polynomials called

Bernstein polynomials, which are defined as follows:

Definition II.1. (Bernstein Polynomials) Given a continuous

function p : Rn
→ R, an input domain (hypercube) In(d, d) ⊂

R
n, and a multi-index L = (l1, · · · , ln) ∈ N

n, the polynomial:

Bp,L (x) =
∑

K≤L

b
p
K,LBerK,L (x) ,

BerK,L (x) =

(

L

K

)

(x− d)
K (

d− x
)L−K

(

d− d
)L

,

b
p
K,L = p

(

(

d1 − d1
)k1

l1
+d1, · · · ,

(

dn − dn
)kn

ln
+dn

)

,

is called the Lth order Bernstein polynomial of p, where

BerK,L (x) and b
p
K,L are called the Bernstein basis and

Bernstein coefficients of p, respectively.

Bernstein polynomials are particularly noted for their ca-

pacity to approximate any continuous function on a closed

interval. This property is crucial when dealing with functions

that are not differentiable, as is the case with certain activation

functions in neural networks, such as the ReLU function.

Given a Bernstein polynomial of order L, one can represent

it as a dense multi-dimensional tensor Den(Bp,L) of n

dimensions, and of a shape of L = (l1 + 1, · · · , ln + 1), where

the K = (k1, · · · , kn) component of Den(Bp,L) is equal to



Fig. 1. Illustrations of the over/under-approximation of the ReLU activation
functions in the interval

[

− 6, 10
]

using different approaches: (Left) Higher-
order polynomials, (Center) triangulation, and (Right) zonotope. The area of
the shaded set A1, A2, A3 represents the approximation error for each of the
approaches [20].

the Bernstein coefficient b
p
K,L. The multi-dimensional tensor

Den(Bp,L) represents all the coefficients b
p
K,L ∀K ≤ L.

Example II.2. Consider the two-dimensional Bernstein polyno-

mial:

Bp,L (x1, x2) =
2

∑

k1=0

3
∑

k2=0

b
p

(k1,k2),L
Ber(k1,k2),L (x1, x2)

with orders L = (2, 3). Its two-dimensional tensor representa-

tion is written as follows:

Den (Bp,L) =







b
p

(0,0),L b
p

(0,1),L b
p

(0,2),L b
p

(0,3),L

b
p

(1,0),L b
p

(1,1),L b
p

(1,2),L b
p

(1,3),L

b
p

(2,0),L b
p

(2,1),L b
p

(2,2),L b
p

(2,3),L






. (1)

C. Polynomial-Based Interval Bound Propagation Using Bern-

stein Polynomials

The BERN-NN framework [20] employs Bernstein polyno-

mials to propagate interval bounds through neural networks

accurately and can be summarized as follows: Step-1: Encode

input domains as Bernstein polynomials: Given the input

domain In(d, d) and a trained NN NN(x), the first step is

to represent the upper/lower bounds of the input domain

d = (d1, · · · , dn) and d =
(

d1, · · · , dn
)

as zero-order

polynomials of the form: NN
(0)

i (x) = di, NN
(0)
i (x) = di

where the superscript (0) denotes the zeroth layer (i.e., input

layer) of the NN. We encode the Bernstein representation of

these polynomials as:

Den(BNN(0),L(0))=
[

Den(B
NN

(0)
1 ,L(0)), . . . ,Den(BNN

(0)
n ,L(0))

]

Den(B
NN

(0)
,L(0))=

[

Den(B
NN

(0)
1 ,L(0)), . . . ,Den(BNN

(0)
n

,L(0))
]

,

where L(0) = (0, . . . , 0).
Step-2: Propagate the Bernstein polynomials through linear

weights: Given the weights and biases of the ith layer of

a neural network (W (i), b(i)) and the n-dimensional tensors

representing the bounds of the i−1 layer Den(BNN(i−1),L(i−1))
and Den(B

NN
(i−1)

,L(i−1)), we propagate them through the

linear weights of the ith layer using linear interval arithmetic:

Den(BNN⋆(i),L(i−1)) = Den(BNN(i−1),L(i−1))∗W
(i)
+

+ Den(B
NN

(i−1)
,L(i−1))∗W

(i)
− +b(i)

Den(B
NN

⋆(i)
,L(i−1)) = Den(B

NN
(i−1)

,L(i−1))∗W
(i)
+

+ Den(BNN(i−1),L(i−1))∗W
(i)
− +b(i),

W
(i)
+ = max

(

W (i), 0i×(i−1)

)

,W
(i)
− = min

(

W (i), 0i×(i−1)

)

where W
(i)
+ and W

(i)
− denote the set of positive and negative

weights between the (i−1)th layer to the ith layer and 0i×(i−1)

denotes the zero matrix of dimension i× (i− 1).
Step-3: Propagate the Bernstein polynomials through

the non-linear activations: Next, BERN-NN over/under-

approximate the non-linear ReLU activation function σ(x) =
max(x, 0) using Bernstein polynomials Bσ,Lσ

and Bσ,Lσ
with

a user-defined approximation order Lσ (see the left subfigure

in Figure 1). Next, it composes the polynomials as:

Den(BNN(i),L(i)) = Bσ,Lσ

(

Den(BNN⋆(i),L(i−1))
)

(2)

Den(B
NN

(i)
,L(i)) = Bσ,Lσ

(

Den(B
NN

⋆(i)
,L(i−1))

)

(3)

Step-4: Repeat steps 2 and 3 until the bounds are propagated

through all the neural network layers. The final step is to

compute the maximum of Den(B
NN

(i)
,L(i)) and the minimum

of Den(BNN(i),L(i)) for all layers i, which will produce the

upper/lower bounds for all neuron outputs in the neural network.

Unfortunately, implementing the interval bound propa-

gation (Steps 1-4) cannot be done using standard tensor

operations due to the mathematical definition of Bernstein

polynomials. That’s why BERN-NN [20] implements special

procedures called (i) Bernstein summation of n-dimensional

tensors (Sum Bern), (ii) Bernstein multiplication of n-

dimensional tensors (Prod Bern), and (iii) computing the

extreme (minimum and maximum) points of n-dimensional

tensors (Min/Max Bern).

D. Memory and Computational Complexity of BERN-NN

It is crucial to recall the memory and computational

complexity of the algorithms used in BERN-NN:

Proposition II.3 ([20]). The memory and computational

complexity of Sum Bern, Prod Bern, and Min/Max Bern

are O ((lmax)
n) where lmax = max

1≤i≤n
li is the maximum order

of the polynomials obtained during the bound propagation.

Moreover, lmax = O(2k) with k the number of NN layers.

In other words, the algorithms needed by BERN-NN scale

exponentially with respect to the NN’s input dimension n and

the NN depth, which makes it hard to use for deep NNs with

large input dimensions.

III. ENHANCED ACCURACY USING OPTIMAL

UNDER-APPROXIMATION OF RELU FUNCTIONS

In this section, we present our first contribution to enhancing

the Bernstein-polynomial interval bound propagation accuracy

described in Section II-C. In particular, Step-3 of the BERN-NN

algorithm [20] utilizes a downwards translation of the Bernstein

over-approximation of the Rectified Linear Unit (ReLU) σ

activation function to achieve its under-approximation (see the

green curves in Figure 2). While the over-approximation is

optimal [20]—i.e., produces the tightest over-approximation of

the ReLU function in the ℓ2 sense—this under-approximation

may not always be optimal, especially when the negative side of

the pre-input bounds significantly outweighs the positive side.

To address this issue, we confine our attention to the use of



quadratic polynomials, and we formulate the “optimal ReLU

under-approximation problem” as an optimization problem

defined as follows:

minimize
a,b,c

A(a, b, c) =

∫ d

d

(

σ (x)−
(

ax2 + bx+ c
)

)

dx

subject to ax2 + bx+ c ≤ σ (x) ,

x ∈ [d, d], (4)

where σ (x) is a ReLU function defined on an interval [d, d].
The optimization problem presented above addresses the

problem of finding the coefficients a, b, and c for a quadratic

polynomial q(x) = ax2 + bx + c, which provides a tight

under-approximation of a given ReLU σ(x). The goal is to

minimize the area A(a, b, c) between the ReLU curve and the

under-approximation curve over the interval [d, d], where d

and d are the lower and upper bounds of the ReLU’s domain,

respectively. By solving this optimization problem, we can

obtain a quadratic under-approximation of the ReLU function

that accurately captures its behavior over the specified domain.

To ensure the soundness of the quadratic polynomial under-

approximation over the entire interval [d, d], the optimization

problem in (4) includes the constraint q(x) = ax2 + bx+ c ≤

σ(x), ∀x ∈ [d, d]. This constraint guarantees that the under-

approximation curve always lies below the ReLU curve. This

quadratic constraint depends on the variable x, making it harder

to solve the optimization problem. In the following proposition,

we rewrite this constraint and remove this dependency so that

it depends only on the polynomial coefficients a, b, and c:

Proposition III.1. Assume that d is negative and d is positive,

i.e., d < 0 < d. The following conditions are sufficient to ensure

that the quadratic polynomial q (x) = ax2+bx+c is an under

approximation of the ReLU function—i.e., q(x) ≤ σ (x):

q (d) = ad2 + bd+ c ≤ 0, q (0) = c ≤ 0

q
(

d
)

= ad
2
+ bd+ c ≤ d, 0 ≤ a

(5)

Proof. Our goal is to show that q(x) ≤ σ(x) for all x ∈ [d, d],
subject to the given conditions. We divide the interval [d, d]
into two cases:

Case 1: For x ∈ [d, 0], we have ax2 ≤ ad2. If b ≥ 0, then

q(x) = ax2+ bx+ c ≤ q(d) = ad2+ c ≤ ad2+ bd+ c ≤ 0. If

b ≤ 0, then q(x) = ax2 + bx+ c ≤ q(d) = ad2 + bd+ c ≤ 0.

In either case, we have q(x) ≤ σ(x) for all x ∈ [d, 0].
Case 2: For x ∈ [0, d], we define l(x) = m1x+m2, where

m1 = q(d)−q(0)

d
and m2 = q(0). It is clear that l(0) = q(0)

and l(d) = q(d). Furthermore, the quadratic polynomial q is

convex because a ≥ 0. Therefore, q(x) ≤ l(x) for all x ∈ [0, d].
To complete the proof, we must show that l(x) ≤ x for all

x ∈ [0, d].

We define ldiff (x) = l(x)−x = q(d)−q(0)−d

d
x+ q(0). Then,

we have ldiff (0) = q(0) ≤ 0 and ldiff (d) = q(d) − d ≤ 0.

Since ldiff is a line defined over [0, d] and ldiff (0) ≤ 0 and

ldiff (d) ≤ 0, we conclude that ldiff (x) ≤ 0 for all x ∈ [0, d].
Therefore, l(x) ≤ x for all x ∈ [0, d]. Consequently, we have

q(x) ≤ σ(x) for all x ∈ [0, d].

Fig. 2. (Left) State-of-the-art over- and under-approximations of
ReLU functions σ (x) using high-order polynomials. (Right) Proposed
optimal over- and under-approximation of ReLU functions σ (x). The
figure shows the area between the two curves A, indicating the
approximation error.

Remark III.2. It is crucial to note that the polynomial under-

approximation is needed only whenever d is negative and d is

positive, i.e., d < 0 < d. In the cases when d is positive or d is

negative, the ReLU function σ(x) is linear (either σ(x) = 0 or

σ(x) = x and polynomial approximation is not needed. Hence,

the proof of Proposition III.1 focuses only on the case when

the condition d < 0 < d is satisfied.

Proposition III.1 enables us to transform the optimization

problem’s non-linear constraint into four linear constraints. We

reformulate the optimization problem (4) as:

minimize
a,b,c

A(a, b, c) =

∫ d

d

(

σ (x)−
(

ax2 + bx+ c
)

)

dx

subject to ad2 + bd+ c ≤ 0, c ≤ 0,

ad
2
+ bd+ c ≤ d, 0 ≤ a. (6)

The objective function A(x) of the optimization problem

can be expressed in the following form:

A(a, b, c) =

∫ d

d

(

σ (x)−
(

ax2 + bx+ c
)

)

=

∫ d

d

σ (x) dx−

∫ d

d

(

ax2 + bx+ c
)

dx

=
d

2
−

(

a(d
3
−d3)

3
+
b(d

2
−d2)

2
+c

(

d−d
)

)

. (7)

By examining eq. (7), it becomes apparent that the objective

function is linear with respect to the coefficients a, b, and c.

Hence, we can transform the optimization problem in (4) into

a linear programming (LP) problem:

maximize
a,b,c

a

(

d
3
− d3

3

)

+ b

(

d
2
− d2

2

)

+ c
(

d− d
)

subject to ad2 + bd+ c ≤ 0, c ≤ 0,

ad
2
+ bd+ c ≤ d, 0 ≤ a. (8)

We now focus on optimizing the problem further. A critical

observation based on the inequalities
d
3
−d3

3 ≥ 0,
d
2
−d2

2 ≥ 0,

d − d ≥ 0, and c ≤ 0, allows us to consider the following

inequality:



∀a, b, and c ∈ R :

a

(

d
3

− d3

3

)

+ b

(

d
2

− d2

2

)

+ c(d− d)

≤ a

(

d
3

− d3

3

)

+ b

(

d
2

− d2

2

)

.

The right side of the inequality is attained when c = 0. This

adjustment simplifies our linear program (LP) by effectively

reducing the number of variables, thereby transforming it into

a more manageable form. The revised LP, with c = 0, is:

maximize
a,b

a

(

d
3

− d3

3

)

+ b

(

d
2

− d2

2

)

subject to ad2 + bd ≤ 0,

ad
2

+ bd ≤ d, 0 ≤ a. (9)

This step is crucial as it reduces the LP’s dimensionality

from three to two, making the problem less complex and more

approachable. The number of constraints also drops from four to

three, further simplifying the solution process. These reductions

are strategic, streamlining the problem without sacrificing the

integrity of the solution space.

Finally, we concentrate on solving the LP problem delineated

in (9). For simplification, let’s define the function f(a, b)
representing our objective:

f (a, b) = a

(

d
3

− d3

3

)

+ b

(

d
2

− d2

2

)

The problem’s feasible region is notably a triangle, defined by

three vertices: v1 = (0, 0), v2 =
(

1

d−d
,

−d

d−d

)

, and v3 = (0, 1).

Our goal is to identify the maximum value of f(a, b) at these

specific points, which correspond to potential solutions of the

LP. To that end, we proceed by evaluating f at each vertex and

comparing these values. The optimal solution is determined

based on which vertex (v1, v2, v3) yields the maximum value

as explained in Algorithm 1.

This approach simplifies the solution process by reducing the

problem to comparisons of function values at specific points

rather than requiring a more extensive search through a contin-

uous space. The solutions adapt based on the vertex yielding

the highest function value, guiding the parameters a, b, and c

accordingly. Figure 2 vividly illustrates that the approximation

error area from the quadratic polynomial is significantly smaller

than that of the original under-approximation [20].

IV. MEMORY-EFFICIENCY USING IMPLICIT

REPRESENTATION OF BERNSTEIN POLYNOMIALS

In this section, we present our second contribution to reduce

the memory requirements of the dense tensor representation

used for bound propagation. Recall that Proposition II.3 shows

that the memory requirements of the n dimensional tensors

grow exponentially with the input dimensions n and the

neural network depth l. Our approach hinges on the so-called

“implicit representation” of Bernstein polynomials. We propose

a novel tensor representation of Bernstein polynomials that

Algorithm 1 Quadratic Coefficients for ReLU Under-

approximation

Input: I = [d, d]
Output: Coefficients a, b, c for the quadratic polynomial

under-approximating ReLU

1: function get quad coeffs under( I = [d, d])
2: f1 ← 0

3: f2 ←
2×d

2
−d×d−d2

6.0

4: f3 ←
d
2
−d2

2.0

5: if max(f1, f2, f3) == f1 then

6: return a = b = c = 0
7: else if max(f1, f2, f3) == f2 then

8: return a = 1

d−d
, b = −d

d−d
, c = 0

9: else

10: return a = 0, b = 1, c = 0
11: end if

12: end function

leads to better memory and computational efficiency, which is

particularly beneficial for high-dimensional scenarios.

A. 2-dimensional Tensor Encoding of High-dimensional poly-

nomials:

Given a multivariate polynomial p of order L = (l1, · · · , ln),
that consists of t terms, as follows:

p (x1, · · · , xn) =
∑

K≤L

aKxK (10)

where K ∈ {K1, · · · ,Kt}, and 0 ≤ Kj ≤ L, ∀j ∈ {1, . . . , t}.

Now, the polynomial p consists of t terms: aKj
xKj =

aKj
x
k1

j

1
· · ·x

kn
j

n , where Kj =
(

k1j , · · · , k
n
j

)

. Let us denote by

term (Kj) = aKj
x
k1

j

1
· · ·x

kn
j

n , the jth term of p. Let us denote

by var
(

kij
)

= x
ki
j

i , 1 ≤ i ≤ n, the ith variable in the jth

term. We represent all the Bernstein coefficients for var
(

kij
)

as Imp
(

B
var(ki

j),li

)

which is shown as follows:

var
(

kij
)

= x
ki
j

i

is encoded as
=======⇒

Imp

(

B
var(ki

j),li

)

=

[

b
var(ki

j)
0,li

, · · · , b
var(ki

j)
li,li

]

. (11)

We call Imp
(

B
var(ki

j),li

)

in (11) the implicit form rep-

resentation (IBF) of one single variable var
(

kij
)

which is

the Bernstein coefficients for that variable. Because the order

of this var
(

kij
)

is li, we can have up to li + 1 Bernstein

coefficients.

Now, computing all the Bernstein coefficients of the jth

term, term (Kj), is equal to the Cartesian product of the Bern-

stein coefficients of every single variable Imp

(

B
var(ki

j),li

)

and multiply the resultant multi-dimensional tensor by the

coefficient aKj
. However, this process is not memory efficient

because the Cartesian product will result in a multi-dimensional

tensor, which is the drawback of the dense representation.



Instead, we compute the IBF of the jth term, term (Kj), by

stacking the IBF of every single variable Imp

(

B
var(ki

j),li

)

row-wise. After that, we multiply the coefficient aKj
by just

the first row. All this is summarized in the following equation:

term (Kj) = aKj
xKj

is encoded as
=======⇒

Imp
(

Bterm(Kj),L

)

=











aKj
Imp

(

B
var(k1

j),l1

)

...

Imp

(

B
var(kn

j ),ln

)











. (12)

The length of ith row in Imp
(

Bterm(Kj),L

)

is equal to

li + 1, 1 ≤ i ≤ n. We denote by lmax = max
1≤i≤n

li. The size

of the IBF of the jth term, term (Kj), Imp
(

Bterm(Kj),L

)

, is

equal to n × (lmax + 1), where we pad the rows of lengths

li < lmax with lmax − li + 1 zeros at the right side.

Now, the total Bernstein coefficients of the whole polynomial

p is the summation of Bernstein coefficients of every term

term (Kj), 1 ≤ j ≤ t. This translates to the IBF of the whole

polynomial p is by stacking the IBF of every term as follows:

p (x1, · · · , xn) =
∑

K≤L

aKxK is encoded as
=======⇒

Imp (Bp,L) =







Imp
(

Bterm(K1),L

)

...

Imp
(

Bterm(Kn),L

)






. (13)

Now the total size of Imp (Bp,L) is equal to nt× (lmax + 1).
Below is an illustrative example.

Example IV.1. Consider the multivariate polynomial

p(x1, x2) = x3
1x

2
2 − 30x1x2, defined over the domain

I2 = [1, 2] × [2, 4], with L = (3, 2). The IBF of x3
1, x2

2, x1,

and x2 are as follows:

Imp

(

B
var(k1

1),3

)

=

[

1, 2, 4, 8

]

Imp

(

B
var(k2

1),2

)

=

[

4, 8, 16

]

Imp

(

B
var(k1

2),3

)

=

[

− 1,−4/3,−5/3,−2

]

Imp

(

B
var(k2

2),2

)

=

[

2, 3, 4

]

. (14)

Using (12) and (13), the IBF of the polynomial p is written

as follows:

Imp(Bp,L) =









1 2 4 8
4 8 16 0

−30 −40 −50 −60
2 3 4 0









. (15)

This example illustrates that if a polynomial p comprises

t terms, and each term is represented by n rows, the total

number of rows in the implicit representation amounts to nt.
The length of each row is given by lmax + 1 = max

1≤i≤n
(li) + 1.

Therefore, the overall size of the implicit representation matrix

is determined by the dimensions nt× (lmax + 1).

B. Efficient Multiplication of Implicit Bernstein Polynomials

Given the memory-efficient encoding in the previous sub-

section, we focus on how to implement an efficient procedure

to compute the product of two Bernstein polynomials encoded

using the 2-dimensional tensors discussed above.

1) Monomial Bernstein Polynomial Multiplication: We focus

initially on polynomials comprising a single term. Consider

two monomials q1(x) = a1x
k1 and q2(x) = a2x

k2 , with

k1 ≤ L1 and k2 ≤ L2. The implicit representations of their

Bernstein polynomials, Imp(Bq1,L1
) and Imp(Bq2,L2

).The

implicit representation of the product of these polynomials,

Imp(Bq1,LBq2,L), is computed using the following procedure:

Imp

(

B̃q1,L1

)

= Imp (Bq1,L1
) ∗ CL1

, (16)

Imp

(

B̃q2,L2

)

= Imp (Bq2,L2
) ∗ CL2

, (17)

Imp (Bq1,L1
Bq2,L2

) =
1

CL1+L2

∗

Conv
(

Imp

(

B̃q1,L1

)

,Imp
(

B̃q2,L2

))

.

(18)

where CL denotes the multi-dimensional binomial tensor, with

its Kth component in the ith row defined as (CL)
i

K =
(

li
K

)

.

With some abuse of notation, we use 1/Cli to denote the multi-

dimensional binomial tensor where its Kth component in the

ith row is equal to 1

(liK)
. The notation ∗ represents element-

wise multiplication, while Conv (A,B) denotes the row-wise

convolution between matrices A and B. The above formu-

lation efficiently generalizes the concept of scaled Bernstein

polynomials [26] to n-dimensional inputs. Efficiently imple-

menting these operations on GPUs—by leveraging element-

wise and convolution operations—ensures high computational

performance. We denote the process in Equations (16)-(18) as

Prod Bern Imp(Bp1,L1
, Bp2,L2

).
2) Multi-variate Bernstein polynomial Multiplication: The

method can be extended to handle the multiplication of implicit

representations of Bernstein polynomials consisting of multiple

terms. Consider two polynomials, p1 =
∑

K≤L1
a1KxK and

p2 =
∑

K≤L2
a2KxK , with t1 and t2 terms, respectively.

Their implicit representations are denoted as Imp(Bp1,L1
) and

Imp(Bp2,L2
). The multiplication of these polynomials in their

implicit Bernstein form is given by:

Imp (Bp1,L1
Bp2,L2

) =
















Prod Bern Impl
(

Imp1 (Bp1,L1
) ,Imp1 (Bp2,L2

)
)

...

Prod Bern Impl
(

Impi (Bp1,L1
) ,Impj (Bp2,L2

)
)

...

Prod Bern Impl (Impt1 (Bp1,L1
) ,Impt2 (Bp2,L2

))

















,

1 ≤ i ≤ t1, 1 ≤ j ≤ t2. (19)

Here, Impi(Bp1,L1
) and Impj(Bp2,L2

) represent the ith and

jth sub-matrices (terms) in Imp(Bp1,L1
) and Imp(Bp2,L2

),
respectively. These sub-matrices are obtained by segmenting

the original implicit representations into t1 and t2 sub-matrices

along their rows. This formulation reveals that multiplying



multivariate polynomials in implicit Bernstein form effectively

boils down to multiplying terms from one polynomial with

those from another, which can be parallelized efficiently using

GPUs.

C. Efficient Summation of Implicit Bernstein Polynomials

In this subsection, we exploit the 2-dimensional tensor

encoding of Bernstein polynomials to implement effective

procedures to add two Bernstein polynomials.

1) Monomial Bernstein Polynomial Summation: Building

upon the foundational work in [27], which addresses the

addition of one-dimensional Bernstein polynomials over the

unit interval, this section introduces an advanced and gen-

eralized approach for the summation of implicit Bernstein

polynomials in a multivariate framework. Our extension caters

to scenarios with n variables over any specified interval

In(d, d). Initially, we focus on monomials of the form

q1(x) = a1x
k1 and q2(x) = a2x

k2 , where k1 ≤ L1 and

k2 ≤ L2. Their respective implicit Bernstein polynomial

representations, Imp(Bq1,L1
) and Imp(Bq2,L2

), are conceived

as n×N blocks. The summation of these polynomials in their

implicit form, Imp(Bq1+q2,Lsum
), is delineated through the

following proposition:

Proposition IV.2. Given two Bernstein polynomials Bq1,L1
(x)

and Bq2,L2
(x) with two different orders L1 =

(

l11, · · · , l
1
n

)

and L2 =
(

l21, · · · , l
2
n

)

, let Lsum = max(L1, L2), where the

max operator is applied element-wise. The implicit tensor

representation of Bq1+q2,Lsum
can be computed as:

Lsum = (max(l11, l
2
1), . . . ,max(l1n, l

2
n)) (20)

Imp (Bq1,Lsum
) =

Prod Bern Imp (Imp (Bq1,L1
) , 1Lsum−L1+1) (21)

Imp (Bq2,Lsum
) =

Prod Bern Imp (Imp (Bq2,L2
) , 1Lsum−L2+1) (22)

Imp (Bq1+q2,Lsum
) =

[

Imp (Bq1,Lsum
)

Imp (Bq2,Lsum
)

]

(23)

Here, 1Le−L+1 signifies a two-dimensional tensor with dimen-

sions n× (Le − L+ 1), exclusively containing ones.

The proof, which extends the argument in [27], is not

presented for brevity. In this context, operations (21) and (22)

are recognized as degree elevation processes, where tensor

dimensions are suitably altered. The final summation, defined

by (23), is executed by vertically concatenating both tensors

once they align dimensionally. We denote this procedure by

Sum Bern Imp.

2) Multi-variate Bernstein Polynomial Summation: We

further extend the method to accommodate summation of

implicit Bernstein polynomial representations containing multi-

ple terms. Consider polynomials p1 =
∑

K≤L1
a1KxK and

p2 =
∑

K≤L2
a2KxK , with t1 and t2 terms, respectively,

denoted as Imp(Bp1,L1
) and Imp(Bp2,L2

). To sum these

polynomials in their implicit Bernstein form, we first dissect

Imp(Bp1,L1
) and Imp(Bp2,L2

) along their primary dimension

into t1 and t2 sub-matrices, respectively, as Impi(Bp1,L1
)

and Impj(Bp2,L2
). Subsequent to applying degree elevation

via (21) and (22) to each sub-matrix, we amalgamate the

resulting matrices vertically in accordance with (23). This

efficient and elegant approach encapsulates the core principle

of multivariate Bernstein polynomial summation in a multiterm

context.

D. Memory and Computational Complexity of Implicit Bern-

stein polynomial representations

The following result summarizes the benefits of the proposed

representation of the implicit Bernstein polynomial representa-

tion.

Proposition IV.3. Given n-dimensional Bernstein polyno-

mial p that comprises of t terms and of order L =
(l1, · · · , ln), Bp,L (x). Its implicit representation Imp (Bp,L)
is 2−dimensional tensor of size nt × (lmax + 1), i.e., the

memory complexity of the implicit representation is O (ntlmax).
Moreover, the computational complexity of Sum Bern Imp and

Prod Bern Imp is O
(

t2maxnlmax

)

where lmax = max
1≤i≤n

li is

the maximum order of the polynomials obtained during the

bound propagation and tmax is the maximum number of terms

in the polynomials obtained during the bound propagation.

Comparing the propositions II.3 and IV.3, we can notice that

the implicit representation reduced the scaling—with respect

to the dimension n—from exponential scaling in the dense

representation to linear scaling on the expense of depending

on the number of terms t. In the worst case, when the number

of terms t grows exponentially, the implicit form may result

in exponential memory usage. Nevertheless, in practice—as

we show in Section VI—the number of terms does not grow

exponentially, which makes the implicit representation ideal

for higher dimensions. In addition, the IBF representation is

always a 2-dimensional tensor no matter the dimension n

or the polynomial order compared to its counterpart— the

dense representation—which represents the polynomial as a

n-dimensional tensor.

V. GPU ALGORITHMS FOR BERNSTEIN POLYNOMIAL

EXTREMA

Recall that the polynomial-based interval bound

propagation—described in Section II-C—requires

three procedures namely, Sum Bern, Prod Bern, and

Min/Max Bern. While Section IV showed how to address

the memory and computational challenges with Sum Bern

and Prod Bern using the 2-dimensional tensor encoding,

computing the minimum and maximum coefficients (the

Min/Max Bern procedure) cannot be carried over using the

2-dimensional tensor encoding since it requires access to the

dense n-dimensional tensor representation.

A direct approach is to convert the implicit representa-

tion Imp(Bp,L) into the corresponding dense representation

Den(Bp,L) followed by finding the minimum and maximum

coefficients. This conversion can be computationally demanding

and memory-intensive, especially for large degrees d and input

dimensions (number of variables) n. To address potential ineffi-

ciencies, we aim to avoid materializing the tensor explicitly, yet



we aim to find the minimum and maximum values within the

n-deminsional dense tensor Den(Bp,L) while avoiding storing

the entire tensor in memory.

A. Implicit Form Min-Max Computation

To find the minimum and maximum values within the tensor

TDen = Den(Bp,L) without explicitly computing and storing it

in the memory, we design a customized CUDA kernel. Given

a 2-dimensional implicit tensor TImp = Imp(Bp,L), we can

index into the tensor TDen(i, j, k, . . . ) by directly accessing

memory locations offset by the axis sizes:

TDen(i, j, k, . . . ) = TImp[id
n−1 + jdn−2 + kdn−3 + . . . ].

Using this connection between the dense and implicit repre-

sentation, our CUDA kernel uses multiple threads in parallel

to compute the local minimum/maximum within partitions of

the dense form. Each CUDA thread is associated with an ID,

ebf_id in Algorithm 2, that is mapped to a unique set of

indices {i, j, k, . . . } to access and compute elements of the

explicit Bernstein form. As t (number of terms), d (number of

columns in the Implicit form tensor), and n (input dimension)

are known, this mapping is achieved through a set of iterative

equations:

i = ⌊t/dn−1⌋,

j = ⌊t/dn−2⌋ − id,

k = ⌊t/dn−3⌋ − id2 − jd

. . .

(24)

The indices are computed on-the-fly within the algorithm,

eliminating the need for storage. This iteration corresponds

to lines 12− 14 of Algorithm 2. The variable index corre-

sponds to the sequence of indices and the variable tracker

corresponds to the subtracted portion. Precomputed powers

dr−1 for r ∈ {1, . . . , n} are stored in constant global memory

and all the threads in a warp compute the same power in

each iteration, which ensures low-latency access. Algorithm

2 returns the extrema for the portion of the tensor TImp that

is covered by a CUDA block. Then, we apply an additional

reduction to compute the global extrema.

B. Quadrant-Constrained Min-Max Computation

In models where the input domain In is constrained to a

single quadrant, specifically when all the variables are positive,

we can significantly streamline the computation for both the

min and max values. This constraint allows for a simplified

kernel, where the computation narrows down to evaluating

only two points in the dense n-dimensional tensor form. This

simplification effectively eliminates the need for a loop over

the entire dense tensor, reducing the computational complexity

to a single iteration over the terms.

C. Distribution Strategy and Challenges.

Distributing Bern-NN-IBF across multiple GPUs is essential

for handling large models that may not fit within the memory

constraints of a single GPU. Our approach involves having

Algorithm 2 Computing the Extrema of a Bernstein Polynomial

in Implicit Form

Input: TImp = Imp(Bp,L), a 2D tensor representing a

Bernstein polynomial. E, the number of elements in the

explicit (or dense) Bernstein form. nterms, nvars, d
respectively denote the number of terms, variables, and

columns used in the implicit bernstein form

Output: min(Bp,L),max(Bp,L) for each CUDA block

1: function ibf-extrema(TImp = Imp(Bp,L))
2: block_sum ← zeros(E,gridDim.y)
3: ebf_id ← global thread id

4: while ebf_id < E do

5: tsum ← 0
6: term_id ← blockIdx.y

7: while term_id < nterms do

8: acc ← 1
9: tracker ← 0

10: for v ∈ {1, . . . ,nvars} do

11: p ← lookup dnvars−v−1

12: index ← ⌊ebf_id/p⌋ − tracker

13: acc ← acc× TImp[term_id][v][index]
14: tracker ← (tracker+ index)× d
15: end for

16: tsum ← tsum+ acc

17: term_id ← term_id+ gridDim.y

18: end while

19: block_sum[ebf_id][blockIdx.y] ← tsum

20: ebf ← ebf_id+ gridDim.x

21: end while

22: return block_sum

23: end function

each GPU compute bounds for a batch of nodes in a layer,

followed by an allgather operation to ensure that all GPUs

have the input bounds necessary for processing the subsequent

layer.

We leverage PyTorch Distributed with the

NCCL backend [28] for efficient GPU commu-

nication. For the allgather operation, we use

torch.distributed.all_gather_object. This

choice is motivated by the need to communicate Python

objects, specifically tensors of different shapes, as part of the

bounding process. However, this flexibility comes at a cost of

communication inefficiencies because it involves transferring

tensors from the GPU to the CPU during the pickling process

(i.e., serialization of Python objects into a byte stream that

operates on CPU memory). This additional data transfer can

be an overhead and impact performance, particularly when

working with large polynomials and frequent communication

between GPUs. Since all_gather_object cannot

efficiently communicate objects over NVLink for direct

GPU-to-GPU communication, we are likely to encounter

a bottleneck that saturates the available communication

bandwidth. Thus, our implementation provides an upper bound

on the expected strong scaling.



VI. NUMERICAL STUDIES

In this section, we perform a series of numerical experiments

to evaluate the scalability and effectiveness of our tool. First,

we conduct an ablation study to check the effect of varying

different parameters (e.g., neural network width, neural network

depth, ReLU approximation order) on the performance of our

tool. We utilize two metrics:

• Execution time: which measures the time (in seconds)

needed to compute the final Bernstein polynomials. Indeed,

smaller values indicate better performance.

• Relative volume of the output set: this metric mea-

sures the “tightness” of the produced over- and under-

approximation polynomials. Without loss of generality,

we focus on neural networks with one output z, and we

compute this metric as:

Vol relative =

Vol Output

Vol Input
=

z − z

∏

n

i=1

(

di − d
i

) (25)

where z and z are the upper and lower bounds on the

NN’s output z obtained by the end of the interval-bound

propagation process. Indeed, smaller values of this metric

indicate tighter approximations of the output set.

After the ablation study, we compare our tool with a set

of state-of-the-art bound computation tools—including the

winner of the last 2023 Verification of Neural Network (VNN)

competition—to study the relative performance.

A. Ablation Studies

We compare the performance and bounds attained by the

original BERN-NN [20] and the proposed BERN-NN-IBF for

the ablation studies. For these comparisons, we attempt to push

the approaches to their limits. We use randomly generated and

fully connected NNs with a single output. We change the input

dimension and the number of neurons in the hidden layers

across the experiments. We run each experiment multiple times

and report the execution time across all the experiments using

box-and-whisker plots. All our experiments were performed

using 8 Nvidia A100 GPU.

Experiment 1: The effect of increasing the hidden dimension.

First, we consider a four-layer NN and keep the input dimension

fixed to two and the output size to one. Each trial varies the

dimensions of all the hidden layers. Figure 3 reports the results

of this experiment. The figure shows that the performance

scaling is favorable for BERN-NN-IBF. Moreover, BERN-

NN is designed to use only one 1 GPU while BERN-NN-

IBF benefits significantly from the parallelization provided

by the developed CUDA kernels and the ability to parallelize

the algorithm across multiple GPUs. Moreover, we notice the

volume of BERN-NN-IBF is 2× smaller than BERN-NN thanks

to the optimal under-approximation (Algorithm 1) resulting in

enhanced bounds.

Experiment 2: The effect of increasing the total number

of layers. To study the effect of increasing the number of

layers, we keep the input dimension fixed to two with a

Fig. 3. Results of Experiment 1: (Top) Execution time vs. hidden dimension.
(Bottom) Relative volume vs. hidden dimension

variable number of layers each with a hidden size of 5 neurons.

Results are shown in Figures 4. Again, we can see that

BERN-NN-IBF achieves better scaling than the original BERN-

NN. As we increase the number of layers, we see a more

obvious performance win for BERN-NN-IBF. Even with this

narrow network, we are able to achieve reasonable speedup by

distributing over multiple GPUs. Also, similar to Experiment

1, we notice the effect of the optimal under-approximation

(Algorithm 1) in enhancing the accuracy of the interval-bound

propagation, leading to better relative volume.

Fig. 4. Results of Experiment 2: (Top) Execution time vs. total number of
layers. (Bottom) Relative volume vs. total number of layers.

Experiment 3: Increasing the total number of neurons.

In Figure 5, we compute the bounds for progressively larger

models to compare the performance of the original BERN-NN

against the developed BERN-NN-IBF. Again, we observe better

scaling with BERN-NN-IBF even when using only 1 GPU for

both BERN-NN and BERN-NN-IBF.



Fig. 5. Results of Experiment 3: Execution time vs. the total number of
neurons. Each layer has 100 neurons, and we successively add one layer.

Experiment 4: Assuming positive input domain In. It is

common that input data can be normalized to fall in the positive

orthant. For instance, in computer vision applications, pixel

values may be normalized to [0, 1]. Assuming that data falls into

the positive orthant greatly simplifies finding the minimum and

maximum of Bernstein polynomials (Algorithm 2), as we no

longer need to convert to the explicit form. In this experiment,

we use a network with an input dimension of 10 and a hidden

layer of varying dimensions. Results are shown in Figures 6.

We notice that making the positive orthant assumption results

in a massive performance boost, with relatively little effect on

the resulting bounds in this case.

Fig. 6. Results of Experiment 4: (Top) Execution time vs. total number of
layers. (Bottom) Relative volume vs. total number of layers.

B. Comparison against State-of-the-Art Tools

In this experiment, we compare the performance of our tool

in terms of execution time and the output set’s relative volume

compared to bound propagation tools such as Symbolic Interval

Analysis (SIA)[29] and part of alpha-CROWN [30]. We note

that alpha-CROWN [30] won the 2023 VNN competition. We

compare Bern-NN against the bound propagation algorithm

used within alpha-CROWN as a representative tool for all the

bound propagation techniques. Moreover, alpha-CROWN is

also designed to harness the computational powers of GPUs.

Experiment 5: Random Neural Networks. We compare the

performance of our tool to SIA, alpha-CROWN, and BERN-NN

for random neural networks with varying numbers of neurons

in the hidden layers (Figure 7). We compare the execution

time and relative volume as a function of the model’s hidden

dimension. The time and volume reported are the averages of 10

trials on randomized models. We also compare the performance

as the input dimension of the network increases (Figure 8).

The results show that SIA is the fastest in terms of execution

time for all different input hyperrectangles due to the simplicity

of its computations. However, its relative volume is the highest.

On the other hand, BERN-NN-IBF’s relative volume is the

smallest for all input spaces, thanks to its tight higher-order

ReLU approximations. Compared to alpha-CROWN (which

also runs on GPUs), BERN-NN-IBF is both faster and produces

tighter bounds, leading to an average of 5× execution time

speedup while achieving the same or better in the relative

volume metric. We conclude that BERN-NN-IBF generally

strikes a good balance between performance and tightness.

Fig. 7. Results of Experiment 5 for varying the number of neurons in each
hidden layer.

Fig. 8. Results of Experiment 5 for varying the input volume.

Experiment 6: Case Study for Control Benchmarks. In

this experiment, we comprehensively assessed various tools

applied to benchmarks derived from NN controllers [21]

to determine the precision of their estimated bounds. The

architecture of the networks employed in each benchmark

can be found in [21]. Table I encapsulates the performance

metrics of these tools, focusing on average execution time

and average relative volume across six control benchmarks.

Notably, BERN-NN-IBF consistently emerged as the second

quickest tool, yet it invariably provided the most accurate

bounds. This accuracy is particularly significant for control

applications, where the specification of interest often spans a

time horizon and necessitates multi-step reachability analysis;

therefore, achieving finer bounds at each stage is imperative.

Moreover, BERN-NN-IBF outperformed CROWN in terms of



TABLE I
RESULTS OF EXPERIMENT 6: EXECUTION TIME AND VOLUME FOR SIA, ALPHA-CROWN, BERN-NN, AND BERN-NN-IBF.

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6
Time (s) Vol Time Vol Time Vol Time Vol Time Vol Time Vol

Sia 0.013 2.549 0.010 9.790 0.010 1.032 0.010 8.549 0.014 53.391 0.012 2.798
Crown 2.389 3.641 2.860 8.574 2.875 0.735 2.674 15.869 2.912 77.734 3.077 3.264

BERN-NN 0.551 1.442 0.846 9.629 0.844 1.106 0.916 8.921 18.367 54.810 1.338 3.454
BERN-NN-IBF 0.218 1.719 0.475 9.003 0.357 0.835 0.304 7.161 7.664 42.747 0.540 2.141

speed across all benchmarks, with the exception of Benchmark

5. While SIA exhibited faster performance than BERN-NN-

IBF, it compromised on the precision of bound estimates.

Each benchmark was subjected to tests with five distinct

hyperrectangles, all centered at zero, with radii varying within

1, 1.5, 2, 2.5, 3, to ensure a robust evaluation. This rigorous

testing methodology underscores the effectiveness of BERN-

NN-IBF in delivering precise and computationally efficient

solutions for control applications, highlighting its superiority

in optimizing both speed and accuracy in bound estimation.

Experiment 7: Case Study for ACAS Xu Benchmark. In this

comprehensive experiment, we assess the efficacy of BERN-

NN-IBF in contrast to CROWN within the context of the

unmanned Airborne Collision Avoidance System (ACAS Xu)

benchmark, as detailed in [31]. This benchmark encompasses

ten distinct properties across 45 neural networks that are

instrumental in generating turn advisories for aircraft to avert

collisions. Each network comprises 300 neurons distributed over

six layers, utilizing ReLU activation functions. The networks

are designed with five inputs that represent the states of the

aircraft and produce five outputs, with the system adopting the

minimum output value as the turn advisory. Further insights

into this benchmark are elaborated in the paper [31].

Empirical data presented in Figure 9 underscore the superior

performance of BERN-NN-IBF over CROWN, both in terms

of computational speed and the precision of the volume

estimations across all ten specifications. This enhancement in

performance is pivotal, particularly in the high-stakes domain of

collision avoidance, where the rapid and accurate computation

of turn advisories is critical for ensuring the safety of the

airspace. BERN-NN-IBF’s ability to outperform CROWN

in these key areas demonstrates its potential to significantly

improve the reliability and efficiency of neural network-based

decision-making systems in safety-critical applications.

C. Scaling Bern-NN-IBF Across Multiple GPUs

Experiment 8: Strong Scaling Experiments. To demonstrate

the scalability of our approach, we perform strong scaling

experiments on 8 NVIDIA A100 GPUs. Results are shown

in Figure 10. The batch-parallel computation of node bounds

across GPUs accelerates BERN-NN-IBF while preserving the

bounds accuracy. This enables bounding larger models, where

intermediate computations do not fit in a single GPU’s memory.

Despite the limitations of allgather with pickling package,

we expect strong scaling due to the computational complexity

of computing bounds for each layer. In future work, exploring

alternative communication strategies or optimizations tailored

for large polynomial data transfers may be essential to further

enhance the scalability of distributed BERN-NN-IBF.

Fig. 9. Results of Experiment 7: (Top) Average Execution time of Crown and
BERN-NN-IBF on the ACAS XU benchmark. Error bars represent the standard
deviation. (Bottom) Average bound of five neurons across 10 specifications from
the ACAS XU benchmark. True bounds (blue) were obtained by evaluating
the NN with 100000 samples from the input domain.

Fig. 10. Strong Scaling up to 8 NVIDIA A100 GPUs. We use a fixed model
with an input dimension of five, two hidden layers with 100 neurons each, and
an output dimension of one. The dashed line represents the ideal strong scaling.
The red crosses are the average runtime of 20 trials with the corresponding
GPU count. We found that the 95% confidence intervals of the mean runtimes
are all within 5% of the mean, so we excluded them from the plot.

Experiment 9: Memory Scalability Experiments. Finally,

we compare the memory scalability of BERN-NN-IBF against

BERN-NN. In this experiment, we perform memory scalability

over a single NVIDIA A100 GPU while limiting the GPU

memory to 10 GBytes. We use NNs with random weights, 5

layers and 25 neurons per hidden layer. We iteratively increase

the input dimension n and we record the input dimension at

which the GPU will run out of memory. Our experiments show

that when n = 6, the dense representation used in BERN-NN

consumes the entire 10 GBytes of memory and the BERN-NN

can no longer finish the bound propagation procedure. On the

other side, and thanks to the 2-dimensional tensor representation

used in BERN-NN-IBF, we can scale up to n = 25. Repeating

the same experiment while limiting the GPU memory to 20

GBytes results in a maximum n = 8 for BERN-NN and a

maximum n = 47 for BERN-NN-IBF which reflects the linear

scalability with the input dimension n in Proposition IV.3.



VII. CONCLUSION

This paper introduces BERN-NN-IBF, which significantly

enhances the BERN-NN framework by implementing the

Implicit Bernstein Form (IBF) to improve memory efficiency.

Key innovations include the design of IBF-specific operations

and the implementation of specialized CUDA routines, im-

proving the speed and accuracy of essential functions like

summations and multiplications. Additionally, we developed a

novel optimization technique for determining the coefficients

of a quadratic polynomial under-approximation of the ReLU

function, resulting in tighter output bounds. Empirical evalua-

tions demonstrate that BERN-NN-IBF outperforms not only its

predecessor, BERN-NN, but also state-of-the-art tools. These

advancements position BERN-NN-IBF as a highly efficient tool

for NN bound propagation, offering significant improvements

in memory efficiency, computational speed, and precision.
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