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Abstract

This paper throws a small “wet blanket” on the hot
topic of GPGPU acceleration, based on experience
analyzing and tuning both multithreaded CPU and
GPU implementations of three computations in sci-
entific computing. These computations—(a) itera-
tive sparse matrix linear solvers; (b) sparse Cholesky
factorization; and (c) the fast multipole method—
exhibit complex behavior and vary in computational
intensity and memory reference irregularity. In each
case, algorithmic analysis and prior work might lead
us to conclude that an idealized GPU can deliver
better performance, but we find that for at least
equal-effort CPU tuning and consideration of realis-
tic workloads and calling-contexts, we can with two
modern quad-core CPU sockets roughly match one
or two GPUs in performance.

Our conclusions should not dampen interest in
GPU acceleration; on the contrary, they do quite the
opposite: they partially illuminate the boundary be-
tween multicore CPU and GPU performance, and
ask architects to consider larger application contexts
in the design of future coupled on-die CPU/GPU
processors.

1 Introduction and Scope

Our group has over the past year been engaged in
the analysis, implementation, and tuning of a va-
riety of irregular computations arising in computa-
tional science and engineering applications, for both
multicore CPUs and GPGPU platforms [5, 12, 6, 16,
1]. In reflecting on this experience, the following
question arose:

What is the boundary between computa-
tions that can and cannot be effectively
accelerated by GPUs, relative to general-
purpose multicore CPUs within a roughly
comparable power footprint?

Though we do not claim to have definitively an-
swered this question, we believe that our prelim-
inary findings might surprise the broader com-

munity of application development teams whose
charge it is to decide whether and how much effort
to expend on GPGPU code development.

Position. Our central aim is to provoke a more
critical view of the role of GPGPU accelerators in
applications. In particular, we argue that, for a
moderately complex class of “irregular” computa-
tions, even well-tuned GPGPU accelerated imple-
mentations on currently available systems will de-
liver only comparable performance, when compared
to well-tuned general-purpose multicore CPU sys-
tems within a roughly comparable power footprint.
Put another way, adding a GPU is equivalent in per-
formance to simply adding one or perhaps two more
multicore CPU sockets. Thus, one might reasonably
ask whether this level of performance increase is
worth the potential “productivity loss” due to hav-
ing to adopt a new programming model and re-tune
for the accelerator.

Our computations of interest are (a) iterative
solvers for sparse linear systems; (b) direct solvers
for sparse linear systems; and (c) the fast multi-
pole method for particle systems. These computa-
tions appear in traditional high-performance scien-
tific computing applications, but are also of increas-
ing importance in graphics, physics-based games,
and large-scale machine learning problems.

Threats to validity. Our conclusions represent our
interpretation of the data, and indeed our position
is intended to provoke discussion. By way of “full
disclosure” upfront, we acknowledge at least the fol-
lowing three major weaknesses in our position.

• (Threat 1) Our perspective comes from a relatively
narrow classes of applications. These computa-
tions come from traditional HPC applications.

• (Threat 2) Some conclusions are drawn from partial
results. Our work is very much on-going, and
we are carefully studying our GPU codes to en-
sure that we have not missed additional tuning
opportunities.

• (Threat 3) Our results are limited to today’s plat-
forms. We consider current widely available
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and state-of-the-art NVIDIA offerings (Tesla
C1060/S1070 and GTX285 systems), but have
not evaluated the latest ATI offerings. More-
over, we recognize that NVIDIA’s upcoming
Fermi processor could drastically change the
conclusions as well [13, 14]. Also, some of the
performance limits we have encountered stem
in part from the limits of PCIe. If CPUs and
GPUs move onto the same die, this limitation
may become irrelevant.

Having acknowledged these limitations, we make
the following counter-arguments.

Regarding Threat 1, we claim this class has at least
two interesting features. First, as stated previously,
we believe our target computations will have an im-
pact in increasingly sophisticated emerging appli-
cations in graphics, gaming, and machine learning.
Secondy, the computations are non-trivial, going be-
yond just a single “kernel,” like matrix multiply
or sparse matrix-vector multiplication. Since they
involve additional context, the computations begin
to approach larger and more realistic applications.
Thirdly, they have a mix of regular and irregular be-
havior, and may therefore live near the “boundaries”
of what we might expect to run well on a GPU vs. a
CPU.

Regarding Threat 2, we would claim that we
achieve extremely high levels of absolute perfor-
mance in all our codes, so it is not clear whether
there is much room left for additional improvement,
without resorting to entirely new algorithms.

Regarding Threat 3, it seems to us that just moving
a GPU-like accelerator unit on the same die as one or
more CPU-like cores will not solve all problems. For
example, the high-bandwidth channels available on
a GPU board would presumably have to be trans-
lated to a future same-die CPU/GPU socket as well,
in order to deliver the same level of performance we
enjoy today when the entire problem can reside on
the GPU.

2 Iterative Sparse Solvers

We first consider the class of iterative sparse solvers.
Given a sparse matrix A, we wish either to solve a
linear system (i.e., compute the solution x of Ax =
b) or compute the eigenvalues and/or eigenvectors
of A, using an iterative method, such as the conju-
gate gradients or Lanczos algorithms [7]. These al-
gorithms have the same basic structure: they iter-
atively compute a sequence approximate solutions
that ultimately converge to the solution within a

user-specified error tolerance. Each iteration con-
sists of multiplying the sparse A by a dense vec-
tor, which is called a sparse matrix-vector multiply
(SpMV) operation. Algorithmically, an SpMV com-
putes y ← A · x, given A and x. To first order, an
SpMV is dominated simply by the time to stream
the matrix A, and within an iteration, SpMV has no
temporal locality. That is, we expect SpMV, and thus
the solver overall, to be largely memory-bandwidth
bound.

We have for many years studied autotuning of
SpMV for single- and multicore CPU platforms [16,
15, 11]. The challenge is that although SpMV is
bandwidth bound, a sparse matrix must be stored
using a graph data structure, which will lead to
indirect and irregular memory references to the x
and/or y vectors, depending on the specific data
structure used to store A. Nevertheless, the main
cost for typical applications on cache-based machines
is the bandwidth-bound aspect of reading A.

Thus, GPUs are attractive for SpMV because they
deliver much higher raw memory bandwidth than
a multisocket CPU system within a (very) roughly
equal power budget. We have extended our au-
totuning methodologies for CPU-tuning [15] to the
case of GPUs [6]. We do in fact achieve a con-
siderable 2× speedup over the CPU case, as Fig-
ure 1 shows for a variety of finite-element model-
ing problems (x-axis) in double-precision: our au-
totuned GPU SpMV on a single NVIDIA GTX285
system achieves 12–19 Gflop/s, compared to an au-
totuned dual-socket quad-core Intel Nehalem im-
plementation that achieves 7–8 Gflop/s, with 1.5–
2.3× improvements. This improvement is roughly
what we might expect, given that the GTX285’s peak
bandwidth is 159 GB/s compared to the aggregate
peak bandwidth on the dual-socket Nehalem system
of 51 GB/s, a 3.1× difference.

However, this performance assumes the matrix is
already on the GPU. In fact, there will be additional
costs for moving the matrix to the GPU combined
with GPU-specific data reorganization. That is, the op-
timal implementation on the GPU uses a different
data structure than either of the the optimal or base-
line implementations on the CPU. Indeed, this data
structure tuning is even more critical on the GPU,
due to the performance requirement of coalesced ac-
cesses; without it, the GPU provides no advantage
over the CPU [3].

The host-to-GPU copy is also not negligible. To
see why, consider the following. Recall that, to first
order, SpMV streams the matrix A, and performs
just 2 flops per matrix entry. If SpMV runs at P
Gflop/s in double-precision, then the “equivalent”
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Figure 1: The best GPU implementation of sparse matrix-vector multiply (SpMV) (“Our code”, on one
NVIDIA GTX 285) can be over 2× faster than a highly-tuned multicore CPU implementation (“Tuned Ne-
halem”, on a dual-socket quad-core system). Implementations: ParCo’09 [16], SC’09 [3], and PPoPP’10 [6].
Note: Figure also to appear elsewhere [2].

effective bandwidth in double-precision is at least (8
bytes) / (2 flops) * P , or 4P GB/s. Now, decompose
the GPU solver execution time into three phases:
(a) data reorganization, at a rate of βreorg words
per second second; (b) host-to-GPU data transfer, at
βtransfer words per second, without increasing the
size of A; and finally (c) q iterations of SpMV, at an
effective rate of βgpu words per second. On a multi-
core CPU, let βcpu be the equivalent effective band-
width, also in words per second. For a matrix of k
words, we will only observe a speedup if the CPU
time, τcpu, exceeds the GPU time, τgpu. With this
constraint, we can determine how many iterations q
are necessary for the GPU-based solver to beat the
CPU-based one:

τcpu ≥ τgpu (1)

⇒ k · q
βcpu

≥ k ·
(

1

βreorg
+

1

βtransfer
+

q

βgpu

)
(2)

⇒ q ≥
1

βreorg + 1
βtransfer

1
βcpu −

1
βgpu

(3)

From Figure 1, we might optimistically take βgpu=
(4 bytes/flop) * (19 Gflop/s) = 76 GB/s, and pes-
simistically take βcpu= (4 bytes per flop) * 6 Gflop/s
= 24 GB/s; both are about half the aggregate peak
on the respective platforms. Reasonable estimates
of βreorg and βtransfer, based on measurement (not
peak), are 0.5 and 1 GB/s, respectively. The solver
must, therefore, perform q ≈ 105 iterations to break-
even; thus, to realize an actual 2× speedup on the

whole solve, we would need q ≈ 840 iterations.
While typical iteration counts reported for standard
problems number in the few hundreds [7], whether
this value of q is “large” or not is highly problem-
and solver-dependent, and we might not know until
run-time when the problem (matrix) is known. The
developer must make an educated guess and take a
chance, raising the question of what she or he should
expect the real pay-off from GPU acceleration to be.

Having said that, our analysis may also be pes-
simistic. One could, for instance, improve effective
βtransfer term by pipelining the matrix transfer with
the SpMV. Or, one might be able to eliminate the
βtransfer term altogether by assembling the matrix on
the GPU itself [4]. The main point is that making
use of GPU acceleration even in this relatively sim-
ple “application” is more complicated than it might
at first seem.

3 Direct Sparse Solvers

The iterative solvers described above have a sim-
ple structure, but robustness (rate of convergence
to a desired accuracy) is always an issue. A more
robust alternative approach is to directly compute
the solution using an explicit matrix factorization,
rather than iterate toward a solution. In the direct
approach, one is guaranteed a certain number of op-
erations, at the cost of significantly more complex
task-level parallelism, more storage, and irregular
memory reference behavior, when compared to the
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Figure 2: Single-core CPU vs. GPU implementations of sparse Cholesky factorization, both including and
excluding host-to-GPU data transfer time. Though the GPU provides a speedup of up to 3×, this is com-
pared to just a single CPU core of an 8-core system. Note: Figure also to appear elsewhere [10].

largely data-parallel and streaming behavior of the
iterative case (Section 2).

We have been interested in such sparse direct
solvers, particularly so-called multifrontal methods
for Cholesky factorization, which we tune specifi-
cally for structural analysis problems arising in civil
engineering [10]. The most relevant aspect of a
sparse direct solver from the perspective of GPU
acceleration is that the workload consists of many
dense matrix subproblems (factorization, triangular
multiple-vector solves, and rank-k update matrix
multiplications). Generally speaking, we expect a
GPU to easily accelerate such subcomputations.

In reality, however, the size of these subproblems
changes as the computation proceeds, and the sub-
problems themselves may execute asynchronously
together, depending on the input problem. That
is, the input matrix determines the distribution
of subproblem sizes, and moreover dictates how
much cross-subproblem task-level parallelism ex-
ists. Thus, though the subproblem “kernels” map
well to GPUs in principle, in practice the structure
demands CPU-driven coordination, and the cost of
moving data from host to GPU will be critical.

Figure 2 makes this point explicitly. We show the
performance (double-precision Gflop/s) of a prelim-
inary implementation of partial sparse Cholesky fac-
torization, on benchmark problems arising in struc-
tural analysis problems. Going from left-to-right, the
problems roughly increase in problem size. The dif-
ferent implementations are (a) a well-tuned, single-
core CPU implementation, running on a dual-socket

quad-core Nehalem system with dense linear alge-
bra support from Intel’s Math Kernel Library (MKL);
and (b) a GPU implementation, running on the same
Nehalem system but with the cores just for coordina-
tion and the GPU acceleration via an NVIDIA Tesla
C1060 with CUBLAS for dense linear algebra sup-
port. Furthermore, we distinguish two GPU cases:
one in which we ignore the cost of copies (red bar),
and one in which we include the cost of copies (blue
bar). The GPU speedup over the single CPU core is
just 3×, meaning a reasonable multithreaded paral-
lelization across all 8 Nehalem cores is likely to win.

4 Generalized N -body Solvers

The third computation we consider is the fast mul-
tipole method (FMM), a hierarchical tree-based ap-
proximation algorithm for computing all-pairs of
forces in a particle system [8, 18, 17]. Our inter-
est derives from the fact that not only can physics
problems be solved by the FMM, but large classes
of methods in statistical data analysis and mining,
such as nearest neighbor search or kernel density
estimation (and other so-called kernel methods), also
have FMM-like algorithms. Thus, a good FMM im-
plementation accelerated by a GPU will have broad
applicability in multiple domains.

In short, the FMM approach reduces an exact
O(N2) algorithm for N interacting particles into an
approximate O(N) or O(N logN) algorithm with an
error guarantee. The FMM is based on two key
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Figure 3: Cross-platform comparison of the fast multipole method. All performance is shown relative to an
“out-of-the-box” 1-core Nehalem implementation; each bar is labeled by this speedup. VF = Sun’s Victoria
Falls multithreaded processor. Note: Figure also to appear elsewhere [5].

ideas: (a) a tree representation for organizing the
points spatially; and (b) fast approximate evaluation,
in which we compute summaries at each node using
a constant number of tree traversals with constant
work per node. The dominant cost is the evaluation
phase, which is not simple: it consists of 6 distinct
components, each with its own computational inten-
sity and varying memory reference irregularity.

All components essentially amount either to tree
traversal or graph-based neighborhood traversals.
Like the case of sparse direct solvers, the compu-
tation within each component is regular and there
is abundant parallelism. However, the cost of each
component varies depending on the particle dis-
tribution, shape of the tree, and desired accuracy.
Thus, the optimal tuning has a strong run-time de-
pendence, and mapping the data structures and sub-
computations to the GPU is not straightforward.

Figure 3 summarizes the results of our current
cross-platform comparison, which includes both
CPU and one- and two-GPU implementations. Prior
work by others had suggested we should expect sig-
nificant speedups (30–60×) from GPU acceleration
compared to a single CPU core [9]. As Figure 3
shows, our own GPU implementation did in fact
yield this range of speedups compared to a baseline
code on a single Nehalem core [12]. However, we
also found that explicit parallelization and tuning
of the multicore CPU implementation could yield

an implementation on Nehalem that nearly matched
the dual-GPU code, within about 10%. Like both of
the previous computation classes, the same issues
arise: (a) there is overhead from necessary GPU-
specific data structure reorganization and host-to-
GPU copies; and (b) variable workloads, which re-
sults in abundant but irregular parallelism as well
as sufficiently irregular memory access patterns.

5 Concluding Remarks

In short, the intent of this paper is to consider much
of the recent work on GPU acceleration and ask
for CPU comparisons in more realistic application
contexts. Such comparisons are critical for applica-
tions like the ones we consider here, which lie be-
tween completely regular computations (e.g., dense
matrix multiply) and wildly irregular applications
(tree-, linked list-, and graph-intensive computa-
tions). Our observations suggest that, for our com-
putations, adding a GPU to a conventional system is
like adding roughly an additional one or two sockets
of performance. This raises broader questions about
the boundary between when a GPU “wins” over a
CPU, and whether any productivity loss (if any) of
tuning specifically for a GPU is outweighed by the
performance gained.
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