
On the Design of Fast Pseudo-Random Number Generators for the

Cell Broadband Engine and an Application to Risk Analysis

David A. Bader∗ Aparna Chandramowlishwaran Virat Agarwal

{bader,aparna,virat}@cc.gatech.edu

College of Computing

Georgia Institute of Technology

Abstract

Numerical simulations in computational physics, bi-
ology, and finance, often require the use of high qual-
ity and efficient parallel random number generators.
We design and optimize several parallel pseudo random
number generators on the Cell Broadband Engine, with
minimal correlation between the parallel streams: the
linear congruential generator (LCG) with 64-bit prime
addend and the Mersenne Twister (MT) algorithm. As
compared with current Intel and AMD microprocessors,
our Cell/B.E. LCG and MT implementations achieve a
speedup of 33 and 29, respectively. We also explore two
normalization techniques, Gaussian averaging method
and Box Mueller Polar/Cartesian, that transform uni-
form random numbers to a Gaussian distribution. Us-
ing these fast generators we develop a parallel imple-
mentation of Value at Risk, a commonly used model for
risk assessment in financial markets. To our knowledge
we have designed and implemented the fastest parallel
pseudo random number generators on the Cell/B.E..

1 Introduction

The Cell Broadband Engine (or the Cell/B.E.)
[8–10, 21] is a novel high-performance architecture de-
signed by Sony, Toshiba, and IBM, primarily targeting
multimedia and gaming applications. The Cell/B.E.
consists of a traditional microprocessor (called the
PPE) that controls eight SIMD co-processing units
called synergistic processor elements (SPEs), a high
speed memory controller, and a high bandwidth bus in-
terface (termed the element interconnect bus, or EIB),

∗This work was supported in part by an IBM Shared Univer-
sity Research (SUR) award and NSF Grants CNS-0614915 and
CAREER CCF-0611589. We acknowledge our Sony-Toshiba-
IBM Center of Competence for the use of Cell Broadband Engine
resources that have contributed to this research.

all integrated on a single chip. Fig. 1 gives an architec-
tural overview of the Cell/B.E. processor. Please refer
to [3,4,6,10,11,19] for a detailed review of Cell/B.E.’s
architecture.

PowerPC

Processing

Element

(PPE)

L1 cache

512 KB

L2 cache

LS

SPE 0

LS

SPE 1

LS

SPE 2

LS

SPE 3

LS

SPE 4

LS

SPE 5

LS

SPE 6

LS

SPE 7

Interrupt

Controller

Element Interconnect Bus (EIB)

Memory

Controller

I/O

Controller

RAM

System Memory

RAM

IO Device

IO Device

Figure 1: Cell Broadband Engine Architecture.

High quality parallel random number generators
have wide applicability in cryptography, computational
biology for example protein structure prediction, ran-
domized algorithms for example in network commu-
nication, and Monte Carlo simulation. In financial
analysis, Monte Carlo is a popular technique used to
compute stock/asset prices, commodity prices and risk
valuation that require estimating losses based on an
underlying stochastic process. Parallel random num-
ber generation becomes especially important for the
upcoming era of manycore architectures, such as the
recently announced Intel TeraFLOPS with 80 cores
on a single die [22] and the next generation of IBM
Cell/B.E. that may offer 32 SPEs [7] to leverage these
highly parallel chips.

In this work we design efficient parallel uniform
pseudo-random number generators that have high
quality and period, and have the potential to scale
well across a large number of cores. We focus our ef-
forts in optimizing the 64-bit Linear Congruential Gen-
erator (LCG) [12] and the 32-bit Mersenne Twister
[17], on the Cell/B.E.. The LCG is one of the old-

1

est pseudo-random number generators and is known
to provide high quality through a simple algorithm
based on a linear function and modular reduction. The
Mersenne Twister provides a period of 219937 − 1 and
623-dimensional equidistribution for a certain choice of
input parameters, making it well-suited for the purpose
of Monte Carlo simulation. We also implement for Cell,
Gaussian random number generators, the Gaussian av-
eraging method and Box Mueller transformation, that
transform uniformly distributed random numbers to a
sequence with Gaussian distribution. These genera-
tors are useful in many applications such as in financial
analysis, using Monte Carlo method.

We present a detailed performance comparison of
our optimized implementations of random number gen-
erators over the leading multi-core and single-core pro-
cessors. Our Cell-optimized 64-bit implementation
of Linear Congruential Generator (LCG) with 64-bit
prime addend attains a speedup of 33 using the Wal-
lace tree approach, as compared with the performance
of leading Intel processors. For our 32-bit implemen-
tation of Mersenne Twister, Cell achieves an average
speedup of over 14 and 29 using block generation and
using sequential approach, respectively, as compared
with the performance on current Intel and AMD ar-
chitectures. In earlier work [1] we implemented the
MT generator on Cell/B.E. for use in financial ser-
vices applications for Option pricing and Collateral-
ized Debt Obligation pricing. The source code for
LCG and Gaussian averaging method is freely avail-
able from our CellBuzz project in SourceForge (http:
//sourceforge.net/projects/cellbuzz/).

Finally, using these optimized Gaussian generators
we develop a parallel 64-bit implementation for Risk
Analysis on the Cell/B.E.. Value at Risk (VAR) is a
commonly used model for risk assessment in financial
markets. Given a portfolio of assets, this model mea-
sures the worst expected loss over a given time interval
at a given confidence level. For performance analysis,
we estimate the risk of one non-linear portfolio consist-
ing of a single stock.

2 Uniform Parallel Random Number

Generators

In this section we discuss two pseudo random num-
ber generators, Linear Congruential Generator and
Mersenne Twister. We briefly describe the algorithm
and discuss in detail the various challenges involved
and optimization techniques used to achieve high per-
formance on the Cell/B.E.

2.1 The LCG generator

Linear Congruential Generator (LCG) is one of the
oldest and most studied pseudo-random number gen-
erating algorithm proposed by Lehmer [12]. In this
generator each successive element is determined by a
simple linear function and a modular reduction.

LCG generates pseudo-random number sequence
{x1, x2,, xn} in the set [0, 1,, m] by the recur-
rence relation of order one given below.

xn = (axn−1 + b) mod m, where n ≥ 0

where b is the addend, a is the multiplier and m denotes
the modulus of the algorithm.

Random numbers in the range [0, 1] are then ob-
tained by normalization (yn = xn

m
). In this work we

use a prime addend, and a power of two modulus, which
gives the algorithm a periodicity of 2k (m = 2k).

In practice, several spectral methods are used to test
the quality (randomness) of the output sequence. Lat-
tice spacing is one such method that helps to get an
insight into the granularity of a random number gen-
erator, and LCG passes this test. This granularity is
computed by applying the Fourier transform on the
output of the generator.

LCG’s are very sensitive to the change in the value of
input parameters. The most important parameter to a
LCG is the modulus m, the size of which determines the
period of the output sequence. The recurrence relation
for a 64-bit LCG (m = 264) is given below.

xn = (axn−1 + b) mod 264

The number of independent streams available for a
LCG generator with these parameters is about 224, al-
lowing for massive parallelism.

2.1.1 Challenges and Optimization

In this work, we optimize the 64-bit LCG that is avail-
able as part of the SPRNG package [15, 16].

The LCG algorithm is data dependent, i.e., to gen-
erate a random number it requires the knowledge of the
number generated in the previous step. This makes it
hard to parallelize the computation of a single stream
among the various SPEs. An alternative technique is to
instantiate the algorithm based on different parameter
values on each SPE. In our design, we select a vector
of unique 64-bit addends [bi1, bi2] for each SPE i. This
is computed inside the SPE based on its stream identi-
fier. This algorithm ensures that the set of all addends
are pairwise relatively prime [14], and ensures that the
independent streams on the SPEs have minimum cor-
relation. Alg. 1 gives the pseudo-code of the parallel
LCG algorithm on a given SPE i.

2

Algorithm 1: Parallel LCG for Cell/B.E.. This
algorithm gives the pseudo-code on a given SPE i.
Each SPE generates two independent streams of 64-
bit pseudo-random numbers.
Loop is unrolled for optimizing on the Cell processor
Each iteration generates a vector consisting of two
random numbers.

Input: Number of Simulations: N , Number of
SPEs p, Vector bi (consisting of 2 unique
64-bit addend parameters), Multiplier a

Output: Random Numbers: N/p

1 va← [a, a];
2 for j = 1 to N/2p do
3 vxj = va ∗ vxj−1 + bi;
4 vxj = vxj * [2−64,2−64];

a
0

b
0

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

a
1

b
0

a
2

b
0

a
3

b
0

a
0

b
1

a
1

b
1

a
2

b
1

a
3

b
1

a
0

b
2

a
1

b
2

a
2

b
2

a
3

b
2

a
0

b
3

a
1

b
3

a
2

b
3

a
3

b
3

Partial sums contributing

to the lower 64 bits

of the product

Figure 2: Multiplying two 64-bit numbers using partial
products of 16-bit numbers.

The algorithm involves 64-bit multiplication and a
64-bit addition. The SPU instruction set does not have
support for multiplication and addition of unsigned
long long vector datatypes. We implemented 64-bit
multiplication with Wallace trees [23], a bit slide adder
version of carry-save adders. The 16 partial products
of 16-bit subword multiplications (see Fig. 3) are re-
arranged into a modular arrangement. Each rectangle
is a Nonadditive Multiply Module (NMM), and repre-
sents a 32-bit sub-product. The output requires only
64-bits, hence the upper 64-bits are discarded. As a
result, we have only 10 partial products to add. The
summation of sub-products are carried out by 3-input
(W3), 5-input (W5) and 7-input (W7) Wallace trees.
Note that the 16-bit slice at the right end does not re-
quire Wallace trees. W3 is a 3-to-2 carry-save full adder

(CSA) which accepts 3 n-bit operands; generates two
n-bit results: n-bit partial sum and n-bit carry. W5

and W7 are constructed using three 3-to-2 CSA and
five 3-to-2 CSA. The advantage of CSA is that there is
no carry propagation between stages.

Each rectangle is a 16 x 16

NMM which produces a

32-bit subproduct.

Our implementation requires

only the lower 64 bits. Hence the

shaded NMMs are unused.

W
5

W
7

W
3

48-bit CPA

Fi
n

a
l P

ro
d

u
ct

s
(1

6
 b

it
s)

Final Product Outputs (64 bits)

a
3

b
0

a
2

b
0

b
1

a
2

a
1

b
0

a
0

b
0

b
1

a
1

b
2

a
1

b
1

a
0

b
2

a
0

b
3

a
0

Figure 3: Wallace tree improves the complexity of mul-
tiplication by reducing the number of partial products
to add.

The last stage of multiplication is a 48-bit Carry
Propagate Adder (CPA) which merges the two vectors
into a final product. Using Wallace trees we can gener-
ate 8 random numbers simultaneously. This algorithm
carries out partial product addition faster than normal
addition since it adds three partial products at a time,
thereby reducing the depth of the adder.

2.2 Mersenne Twister

The Mersenne Twister (MT) is a pseudo random
number generator algorithm developed by Makoto and
Matsumoto [17]. The algorithm is proven to have a pe-
riod of 219937− 1 and 623-dimensional equidistribution
for a certain choice of parameters, thus providing a very
high quality for the purpose of Monte Carlo simulation.
The sequence of random numbers generated passes well
known stringent tests such as Marsaglia [13], and tests
on higher dimensional uniformity including the spec-
tral test and k-dimensional test.

Alg. 2 gives the pseudo-code of the Mersenne
Twister algorithm. Steps 1 & 2 create masks for up-
per (u) and lower (ll) bits. In Step 3, an array of size

3

Algorithm 2: Mersenne Twister algorithm

Input: Integer constants l, s, t, a, r, Bit masks
b, c each of word size, Algorithm param-
eters n and m

1 u← 1...10...0 (w − r ones and r zeroes);
2 ll← 0...01...1 (w − r zeroes and r ones);
3 x[0], x[1], ..., x[n− 1]← “any non-zero initial

values”;
4 i← 0;
5 y ← (x[i]&u)|(x[i + 1 mod n]&ll);
6 if least significant bit of y == 0 then
7 x[i]← x[(i + m) mod n]⊕ (y ≫ 1);

8 else
9 x[i]← x[(i + m) mod n]⊕ (y ≫ 1)⊕ a;

10 y ← x[i];
11 y ⊕ (y ≫ u);
12 y ⊕ ((y ≪ s)&b);
13 y ⊕ ((y ≪ t)&c);
14 y ⊕ (y ≫ l);
15 output y;
16 i← (i + 1) mod n;
17 repeat from step 5;

n is initialized with non-zero initial values. In Step
5, for a given value of the index i, y is computed by
concatenating the upper bits of x[i] with the lower bits
of x[i + 1]. Steps 6 to 14 improve the accuracy and
equidistribution properties of the output random num-
ber. This array is traversed in a round robin manner
during the subsequent iterations of the algorithm.

2.2.1 Challenges and Optimization

To obtain a period of 219937−1 we choose n = 624, m =
397. The values of other parameters can be obtained
from Makoto and Matsumoto [17]. As we observe from
Alg. 2, the algorithm fits within a working area of
624 32-bit words. This is especially beneficial for the
Cell architecture given the limited local store of 256KB
available on any given SPE.

Since there is no branch predictor on the Cell SPE,
it is important to reduce branches from the code for
achieving high performance. We eliminate the branch
from the Mersenne Twister algorithm, by replacing the
if-then-else statement (Steps 5-9) with

x[i]← x[(i + m) mod n]⊕ (y ≫ 1)⊕ (a & wlsb(y))

where, wlsb(y) gives the word with each bit as the least
significant bit of y.

We next describe two ways to parallelize this for the
Cell. One technique is to optimize the algorithm for a

single SPE and use different seeds for various SPEs to
generate multiple random streams. Using a dynamic
seed for each SPE ensures that the combined stream
has high quality of randomness [18]. Another technique
is to generate a single stream of random numbers us-
ing the various SPEs. It is important to note that in
this algorithm the computation from the latter part of
the array requires the updated data from the first part
which makes the algorithm data dependent. To obtain
high performance on Cell, we use the first paralleliza-
tion technique in our design. However, using different
seeds on different SPEs is not enough since the gener-
ated random numbers from the various SPEs may be
correlated, leading to degraded quality of Monte Carlo
simulations. A solution to this is Dynamic Creator [18]
that is based on the Mersenne Twister algorithm. This
generates different algorithm parameters for the vari-
ous SPEs which helps in generating multiple indepen-
dent streams.

To further optimize the algorithm on Cell we use
standard optimization techniques such as vectoriza-
tion, loop unrolling, and data alignment. It is im-
portant to note that for the given parameter values
of n = 624 and m = 397, the data access pattern of
the algorithm introduces challenges for optimizing this
on the SPEs. It is not straightforward to vectorize
the code, as the index i + m that is required during
the computation in Steps 5-9 may not lie at a 16-byte
boundary as required by Cell’s vector intrinsics. Thus,
we use spu shuffle instructions to create vectors that
are quadword aligned. This adds extra instructions
to the algorithm and results in a slight degradation of
performance.

3 Gaussian Parallel Random Number

Generators

The random number generators discussed in the
previous section generate uniform random numbers
(random numbers uniformly distributed in the inter-
val [0, 1]). Many applications, such as the Monte Carlo
method, require a random variable with Gaussian (nor-
mal) distribution (range ∈ [−1, 1], mean = 0, variance
= 1). In this section we present three methods that
transform a set of uniform random numbers into nor-
malized random numbers and report their performance
on the Cell processor.

3.1 Gaussian Averaging Method

Gaussian averaging method [5] transforms a stream
of uniform random numbers into a Gaussian (normal)
distribution. To generate a Gaussian with mean µ and

4

standard deviation σ, n uniform random numbers are

added together into s, and the output is µ + σs
√

3.0
n

.

The parameter n determines the accuracy of the trans-
formation. If n is large, then accuracy of the output
increases along with an increase in the running time.
To optimize this for the Cell we use vectorization and
loop unrolling.

3.2 Box Mueller Polar/Cartesian

For every pair of input random numbers, Box
Mueller transformation [2] in Cartesian form generates
a pair of normalized random numbers. Alg. 3 gives the
pseudo-code of this transformation algorithm.

Algorithm 3: Box Mueller transform in Cartesian
form.

Input: Independent uniform random numbers
(x,y)

Output: Normal random numbers (x̄, ȳ)

1 R =
√
−2 ∗ lnx;

2 θ = 2π ∗ y;
3 x̄ = R ∗ cos θ;
4 ȳ = R ∗ sin θ;

In the Polar form for every pair of input random
numbers, a pair of normalized numbers is generated if
the input pair lies within a unit disc. Alg. 4 gives the
pseudo-code of this transformation algorithm.

Algorithm 4: Box Mueller transform in Polar
form.

Input: Independent uniform random numbers
(x,y)

Output: Normal random numbers (x̄, ȳ)

1 s = x2 + y2;
2 if 0 < s ≤ 1 then

3 z =
√

−2∗ln s
s

;
4 x̄ = x ∗ z;
5 ȳ = y ∗ z;

The presence of a branch in the Box Mueller trans-
formation algorithm (Polar form) poses several issues
during optimization on the Cell. The branch restricts
vectorization of the algorithm, and leads to the degra-
dation in performance. This problem is equivalent to
extracting elements from a long input array A that sat-
isfy a given condition X , using vector intrinsics. Alg. 5

Algorithm 5: Extracting elements from array A
that satisfy a condition X , using a vectorized ap-
proach

Input: array A, length N

Output: array C consisting of j elements

1 for i← 1 to N do
2 B[i] = X(A[i]);

3 j ← 0;
4 for i← 1 to N do
5 C[j] = A[i];
6 j = j + B[i];

gives an elegant way to eliminate this branch using a
two stage approach.

In comparison to the Box Mueller transform in
Cartesian form, this algorithm discards about one in
four pairs of input random numbers, but it avoids the
use of a trigonometric function (which is comparatively
an expensive operation). Thus, Box Mueller in Polar
form is a computationally less expensive as compared
to the Cartesian form, but harder to optimize on the
Cell.

For compute intensive operations such as log,
sqrt, sin and cos we use the 64-bit vector routines
available as part of the SIMD math library for the
Cell Broadband Engine.

4 Performance Analysis

We report our performance results from actual runs
on a IBM BladeCenter QS20, with two 3.2 GHz
Cell/B.E. processors, 512 KB Level 2 cache per proces-
sor, and 1 GB memory (512 MB per processor). For
performance comparisons we compile our code using
the xlc compiler provided with Cell SDK 2.1, with level
3 optimization.

Linear Congruential Generator

Table 1 lists the performance of our 64-bit Linear Con-
gruential generator implementation on Cell in terms of
million random numbers generated per second (MRS)
and compares with other architectures. For per-
formance results on these architectures we used the
SPRNG optimized implementation of LCG and com-
pile it with icc v9.0 with level 3 optimization for Intel
Xeon 5150 (Woodcrest) and -fast optimization for In-
tel Xeon 3 GHz and Intel Pentium 4 processors. Fig. 4
plots the performance and reports the speedup of our
implementation across these various architectures. We
achieve speedup of 33.2 over a 2.6 GHz Intel Xeon 5150.

5

Table 1: LCG performance
CPU/Compiler LCG (Million random

numbers/second)

Intel Xeon, 3GHz 8.6
Intel C/C++ v9.0
Intel Pentium 4, 3.2 GHz 8.3
Intel C/C++ v9.0
Intel Xeon 5150, 2.6 GHz 100.0
Intel C/C++ v9.0
IBM Cell/B.E., 3.2 GHz 3323.4
xlc (Cell SDK 2.1)

Figure 4: Comparison of performance of 64-bit LCG
across various architectures in terms of million random
numbers generated per second, as reported in Table 1.
The number above each bar represents the speedup of
the corresponding architecture as compared with a 3.2
GHz Intel Pentium 4.

Mersenne Twister

Table 2 lists the performance of our 32-bit Mersenne
Twister implementation on Cell and compares with
other architectures. For performance comparisons with
Intel, AMD and IBM PowerPC processors we use re-
sults from optimized implementations (using SIMD in-
structions) of the Mersenne Twister algorithm as re-
ported by Saito and Matsumoto [20].

Fig. 5 reports the performance and plots the
speedup of our 32-bit Mersenne Twister implemen-
tation on Cell (using one Cell processor) and com-
pares with other architectures. Block approach gen-
erates a block of random numbers and Sequential ap-
proach generates one random number per iteration.
MT(SIMD) gives the performance of a vectorized im-
plementation of the Mersenne Twister algorithm. We
achieve speedup of 11.5 over Intel Pentium 4, 3.0 GHz

Table 2: Time in seconds using MT to generate 100
million random 32-bit samples in sequential and block
pattern on various architectures. The performance re-
sults on the Intel, AMD and IBM PowerPC processors
are from Saito and Matsumoto [20].
CPU/Compiler Output MT MT

(SIMD)

Intel Pentium-M 1.4 GHz block 1.122 0.627
Intel C/C++ v9.0 [20] seq 1.511 1.221
Intel Pentium-4 3.0 GHz block 0.633 0.391
Intel C/C++ v9.0 [20] seq 1.014 0.757
AMD Athlon 64 3800+ block 0.686 0.376
2.4 GHz, gcc v4.0.2 [20] seq 0.756 0.607
IBM PowerPC G4 block 1.089 0.490
1.33 GHz, gcc v4.0.0 [20] seq 1.794 1.358
IBM Cell/B.E. 3.2 GHz block - 0.034
xlc seq - 0.036

in the block random number generation and a speedup
of 22.2 using the sequential approach. The Cell opti-
mized implementation generates 3.2 billion psuedo ran-
dom numbers per second from a single Cell processor.

5 Case Study: Risk Analysis

The Value at Risk (VAR) is a commonly used model
for risk assessment in the Financial Services Sector. A
VAR statistic has three components: a time period, a
confidence level and a loss amount (or loss percentage).
This model aims at computing the worst expected loss
over a given time interval at a given confidence level.
The confidence level is usually either 95% or 99%. We
model stock prices using the Geometric Brownian Mo-
tion (GBM) model, which is technically a Markov pro-
cess. This means that the stock price follows a random
walk and is consistent with the weak form of the effi-
cient market hypothesis (EMH): past price information
is already incorporated and the next price movement
is conditionally independent of past price movements.

In this section, we present the estimation of the VAR
for a portfolio consisting of a single stock. Monte Carlo
(MC) simulation is a popular method for estimating
this value when high precision is desired for non-linear
portfolios. In MC simulation the number of cycles N
in general is very large, and the cycles are independent
of one another. Thus, we divide the number of cycles
among the various SPEs, with each SPE computing
results from N/p cycles, where p is the number of SPEs.

Given the limited local store on an SPE pre-
computing the normal random numbers and storing
them on the PPE should be avoided. Instead, we cal-

6

Figure 5: Comparison of running times to generate 100
million 32-bit random samples in sequential and block
pattern on various architectures as reported in Table 2.
The number above each bar represents the speedup of
Cell/B.E. as compared with the corresponding archi-
tecture.

culate these numbers during each Monte Carlo cycle.
The role of the PPE in the algorithm is to gather in-
put data from the user, partition the work among the
various SPEs (divide the total number of cycles), cre-
ate SPE threads, and gather the computed stock price
value from each SPE. The pseudo-code for risk assess-
ment of stock prices using Monte Carlo simulation is
given by Alg. 6. In the risk analysis algorithm, Steps
2 & 3 are computationally intensive.

Algorithm 6: Monte Carlo method for Risk Anal-
ysis

Input: Current Stock Price (S), Expected return
(µ), Standard Deviation of returns (σ),
Time (∆t), Number of cycles (N)

1 for j = 1 to N do
2 Generate uniform random number r;
3 Transform r to Gaussian (normal) random

number ǫ;
4 Compute ∆S = S (µ∆t + σǫ

√
∆t);

Step 4 computes the value of stock price, S. The
first term is a drift and the second term is a shock. For
each time period, the GBM model assumes the price
will drift up by the expected return. But the drift
will be shocked (added or subtracted) by a random
shock that is the standard deviation, σ, multiplied by
a random number, ǫ.

5.1 Performance Analysis

We use different combinations of parallel uniform
and Gaussian random number generators (RNGs) to
develop Cell-based 64-bit implementations of the Value
at Risk (VAR) model. For uniform RNG we use our op-
timized implementation of Linear Congruential pseudo
random number generator with 64-bit prime addend,
and for Gaussian RNG we use the Gaussian averaging
method, and the Box Mueller transformation in Po-
lar/Cartesian form described earlier in Section 3. Fig. 6
reports the running time for each of these implementa-
tions.

Figure 6: VAR performance

For our 64-bit implementation of the Gaussian av-
eraging method, n = 8 random numbers are added
together to generate the output. The performance of
implementations that use Box Mueller transforman-
tion are significantly lower than the Gaussian averaging
method due to inefficient vector routines for mathe-
matical operations such as sin,cos,sqrt,log. All of our
implementations are optimized for the Cell/B.E. us-
ing standard optimization techniques such as vector-
ization, loop unrolling and data alignment for best per-
formance.

6 Conclusion

We design optimized parallel implementations of
two pseudo random number generators, the 64-bit
Linear Congruential Generator (LCG) and the 32-bit
Mersenne Twister (MT) for the Cell Broadband En-
gine. To optimize the 64-bit operations in LCG we
use Wallace tree method. For the MT implementation,

7

we improve the algorithm to eliminate branches and
optimize the code using standard techniques such as
loop unrolling and vectorization. As compared with
current Intel and AMD microprocessors, our parallel
LCG and MT implementations achieve a speedup of
33 and 29, respectively. We also optimize three Gaus-
sian random number generators, Gaussian Averaging
method and the Box Mueller transformation in Polar
& Cartesian forms and explore their performance and
accuracy for the purpose of Monte Carlo simulation.
We use these generators for the Value at Risk model, a
commonly used model for risk assessment in financial
markets. These generators can also be widely used for
applications that are run on Monte Carlo simulation.
To our knowledge we have designed and implemented
the fastest parallel pseudo random number generators
on the Cell/B.E..

References

[1] V. Agarwal, L.-K. Liu, and D. Bader. Financial mod-
eling on the cell broadband engine. In Proc. Int’l Par-
allel and Distributed Processing Symp. (IPDPS 2008),
Miami, FL, Apr. 2008.

[2] G. E. P. Box and M. E. Muller. A note on the gen-
eration of random normal deviates. The Annals of
Mathematical Statistics, 29(2):610–611, 1958.

[3] T. Chen, R. Raghavan, J. Dale, and E. Iwata.
Cell Broadband Engine Architecture and its
first implementation. http://www-128.ibm.com/

developerworks/power/library/pa-cellperf/,
Nov. 2005.

[4] B. Flachs, S. Asano, S. Dhong, P. Hotstee, G. Ger-
vais, R. Kim, T. Le, P. Liu, J. Leenstra, J. Lib-
erty, B. Michael, H. Oh, S. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano. A
streaming processor unit for a Cell processor. In In-
ternational Solid State Circuits Conference, volume 1,
pages 134–135, San Fransisco, CA, USA, February
2005.

[5] R. George. Algorithm 200: normal random. Commu-
nications of the ACM, 6(8):444, 1963.

[6] H. Hofstee. Cell Broadband Engine Architec-
ture from 20,000 feet. http://www-128.ibm.com/

developerworks/power/library/pa-cbea.html,
Aug. 2005.

[7] H. Hofstee. Real-time supercomputing and technology
for games and entertainment. In Proc. SC, Tampa, FL,
Nov. 2006. (Keynote Talk).

[8] IBM Corporation. Cell Broadband Engine technology.
White paper.

[9] IBM Corporation. The Cell project at IBM Research.
White paper.

[10] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer,
and D. Shippy. Introduction to the Cell multiproces-
sor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[11] M. Kistler, M. Perrone, and F. Petrini. Cell multipro-
cessor communication network: Built for speed. IEEE
Micro, 26(3):10–23, 2006.

[12] D. Lehmer. Mathematical methods in large-scale com-
puting units. In Proc. 2nd Symp. on Large-Scale Digi-
tal Calculating Machinery, pages 141–146, Cambridge,
MA, May 1951.

[13] G. Marsaglia. A current view of random numbers. In
Computer Science and Statistics, Proceedings of the
Sixteenth Symposium on The Interface, pages 3–10,
North-Holland, Amsterdam, 1985.

[14] M. Mascagni. Parallel linear congruential generators
with prime moduli. Parallel Computing, 24(5–6):923–
936, 1998.

[15] M. Mascagni and A. Srinivasan. Algorithm 806:
SPRNG: a scalable library for pseudorandom number
generation. ACM Trans. Math. Softw., 26(3):436–461,
2000.

[16] M. Mascagni, A. Srinivasan, S. Ceperley, and
F. Saied. Scalable Parallel Random Number Gener-
ators (SPRNG) Library. Florida State University, 2.0
edition, 1995. sprng.cs.fsu.edu.

[17] M. Matsumoto and T. Nishimura. Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Trans. Model. Com-
put. Simul., 8(1):3–30, 1998.

[18] M. Matsumoto and T. Nishimura. Dynamic creation
of pseudorandom number generators. In Monte Carlo
and Quasi-Monte Carlo Methods 1998, pages 56–69.
Springer, 2000.

[19] D. Pham, E. Behnen, M. Bolliger, H. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, B. Le,
Y. Masubuchi, S. Posluszny, M. Riley, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, and
K. Yazawa. The design and implementation of a first-
generation Cell processor. In International Solid State
Circuits Conference, volume 1, pages 184–185, San
Fransisco, CA, USA, February 2005.

[20] M. Saito and M. Matsumoto. Simple and Fast MT:
A Two times faster new variant of Mersenne twister.
2006.

[21] Sony Corporation. Sony release: Cell architecture.
White paper.

[22] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain,
V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and
S. Borkar. An 80-Tile Sub-100-W TeraFLOPS Pro-
cessor in 65-nm CMOS. In International Solid State
Circuits Conference, pages 29–41, Lille, France, 2007.

[23] C. Wallace. A suggestion for a fast multiplier. IEEE
Trans. Electronic Computers, EC-13(1):14–17, Feb.
1964.

8

