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ABSTRACT
Partitioning of multi-block structured grids impacts the perfor-
mance and scalability of numerical simulations. An optimal parti-
tioner should achieve both load balance and minimize communica-
tion time. The state-of-art domain decomposition algorithms do a
good job at balancing the load across processors. However, even
if the work is well balanced, the communication cost might not
be. The two main factors that impact communication cost are edge
cuts and communication volume. The current partitioners primarily
focus on reducing the total communication volume and rely on
simple techniques such as cutting at the longest edge which does
not capture the connectivity in the geometry. They also don’t factor
the effect of the network’s latency and bandwidth for partitioning
resulting in the same partition across all platforms. In addition,
their performance tests mostly adopt a flat MPI model where the
partition’s effect on communication is hidden by the fast shared
memory accesses between cores on the same node.

In this paper, we present new partitioning algorithms for multi-
block structured grids that address the above limitations of current
partitioners. The new algorithms include a cost function which not
only accounts for both the communication volume and edge cuts but
also takes into account the network’s latency and bandwidth. We
minimize the overall cost among all processors in an effort to create
optimum partitions. To demonstrate the efficiency of the proposed
algorithms, we test the partitioners with an MPI+OpenMP hybrid
model where MPI routines handle inter-node communication and
OpenMP threads take advantage of the shared memory within a
node. On the Mira supercomputer, our partitioners coupled with
a Jacobi solver demonstrate 5.5 − 15× speedup in communication
against a greedy algorithm on a synthetic multi-block structured
grid and 1.5× speedup on the Falcon Heavy Space-X grid consisting
of 769 blocks.
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1 INTRODUCTION
Evolution of physics-based simulations and Computational Fluid
Dynamics (CFD) in particular has fundamentally reshaped the de-
sign and engineering process in the last several decades. To simulate
physical phenomena numerically, the domain is discretized with a
grid. A PDE solver then computes the physical variables (such as
density and velocities) either in the cells or on the vertices of the
grid. When applying numerical methods to solve PDEs, the type of
grid determines the type of solver and target optimizations.

There are two main types of grids namely, structured and unstruc-
tured grids. Structured grids are characterized by regular connectiv-
ity between its grid cells. They have the advantage that the physical
grid maps ideally with the memory layout (cell i is adjacent to cell
i + 1, both physically and in memory) and each cell’s neighbor can
be accessed by simply shifting the cell’s index. Typically, structured
grids for complex geometries such as an aircraft or turbo-machinery
contain on the order of 100s of blocks.We call such gridsmulti-block
structured grids. On the contrary, unstructured grids lack regular
connectivity and can form arbitrarily connected shapes to capture
complex geometries.

To run a CFD application in parallel, the multi-block structured
or unstructured grid has to be further partitioned into sub-blocks
to be distributed among the processors. A “good partitioner" should
balance the workload i.e., the number of grid cells, among the pro-
cessors to achieve load balance. The processors also communicate
to exchange data (called halo cells) at the boundary of their re-
spective computational domains (called block2block boundary) at
regular intervals during the simulation. This results in inter-node
communication when connected blocks reside on different proces-
sors. It is critical to minimize this communication. Therefore, the
partitioner has to also take into account the cost of communica-
tion which is both application-specific (the number of halo cells
is dependent on the numerical scheme) and architecture-specific
(the communication cost is network dependent). There are two
primary metrics that influence the cost of communication – the
communication volume and the number of edge cuts. The former
denotes the volume of data transferred through the network and
the latter refers to the number of messages communicated between
processors. As a result, there are numerous factors and trade-offs
to consider when devising an optimal grid partitioner.

A grid can be represented as a graph. Several libraries exist such
as METIS [12], CHACO [13] which can partition unstructured grids.
However, a direct application of graph partitioners to structured
grids is not feasible since it fails to preserve the regular connectivity.
The work on partitioning structured grids can be categorized into
two classes – top-down and bottom-up strategies. The top-down
strategy either cuts off chunks of large grid blocks or groups small
blocks to fill the capacity of available partitions. Greedy heuristics
are typically suitable for this type of approach. A classical algorithm
was proposed in [20] and later studies [1, 3, 5, 7, 18, 19] can all be
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viewed as an improvement of a greedy framework. The key idea
behind the bottom-up strategy is to treat a structured grid as a graph
of blocks and then apply a graph partitioner. For large scale parallel
simulations, the number of computation units, i.e., the number
of partitions needed is typically larger than the number of grid
blocks. To feed enough blocks to a graph partitioner, blocks are
cut into smaller sub-blocks and then partitioned as a graph of sub-
blocks [17]. Finally, the sub-blocks within the same partition are
merged. A large number of small sub-blocks are desirable for graph
partitioners but this is likely to result in excessive blocks and halo
regions which can, in turn, impact the communication cost [14].

Prior works [1, 3, 7, 14, 17–20] mostly share the following draw-
backs. First, they mainly focus on reducing the total communication
volume by techniques such as cutting at the longest edge [3, 18, 20]
and edge cuts are only implicitly factored by avoiding splitting
block2block boundaries [19]. A cost function that estimates the
communication cost introduced by cutting and assigning blocks
which combines the communication volume and edge cuts is yet to
be explored. Second, current domain decomposition schemes have
only been studied in the context of a flat MPI or MPI-everywhere
model where each MPI process is mapped to one core. The latency
of data access within a node is significantly lower than accesses
across nodes. Therefore, the partitioner should largely consider the
cost of communication in the latter case. Finally, most partitioners
produce the same partition regardless of the underlying network.
Some researchers [5, 7] use the network bandwidth to estimate
the communication cost of assigning a block but ignore the net-
work’s latency. We argue that the communication cost should take
into account both the latency and bandwidth of the network. The
goal of this paper is to make a concerted effort to design portable
multi-criteria partitioners for multi-block structured grids.

To that end, this paper makes the following contributions.
• We use the α − β model to construct a cost function for inter-
node communication (Section 2). The cost function captures
both the total communication volume and the number of
edge cuts in the network. The latency, α , and bandwidth,
β values are measured empirically on the target platform,
which ensures the portability of our partitioner.
• Wedesign new top-down partitioning algorithms tominimize
the total communication cost estimated by the above cost
function. The algorithms are composed of new heuristics
to cut large blocks with a minimal increase in communi-
cation cost and to group small blocks to map block2block
boundaries to shared memory accesses (Section 2).
• We evaluate the quality of the proposed algorithms on two
3D geometries namely, a synthetic 5-block grid and the
SpaceX’s Falcon Heavy rocket consisting of 769 blocks. A
hybrid MPI-OpenMP Jacobi solver is used to evaluate dif-
ferent partition’s effect on performance (Section 3). On the
Mira supercomputer, the new algorithms outperform the
top-down greedy heuristic by 1.5 − 3× (Section 4).

2 DOMAIN DECOMPOSITION ALGORITHMS
In sections 2.1 and 2.2, we first describe one top-down and one
bottom-up algorithm as the baseline for comparison. Among the top-
down algorithms, the classical greedy heuristic [20] is most widely

used in CFD software such as elsA [9]. Although researchers [1, 19]
claim improvements over the greedy heuristic, their performance
enhancement is observed in the context of a flat MPI model. As a
result, the partitions’ effect on inter-node communication is not
entirely clear. In addition, their implementation details are not
available to re-produce their partitioners. Therefore we choose the
classical greedy heuristic as the baseline for top-down algorithms.
As for the bottom-up algorithm, the creation of sufficient small sub-
blocks is critical while the choice of the actual graph partitioner is
not as important. Therefore, we choose METIS for its popularity
and widespread use.

Given the number of partitions, P , the blocks are divided into
large and small sub-blocks based on the averageworkloadW i.e., the
average number of grid cells in a partition. A top-down partitioner
must handle two tasks – (a) cut large blocks into sub-blocks such
that each sub-block fits in one partition, and (b) group small blocks
to fill remaining partitions. A small block may also be cut if the
partition’s remaining capacity is not large enough. In section 2.3,
we propose a cost function based on the well-known α −β model to
decide which block to cut/group such that the communication cost
is minimized. In the following sub-sections 2.4 - 2.7, we develop
new algorithms for cutting large blocks and grouping small blocks
based on the new cost function.

We explain the different partitioning strategies using an example
synthetic grid called Bump3D which consists of 5 blocks as shown
in Figure 1. Bump3D has one block that is significantly larger than
the others which challenges the algorithms’ ability to cut large
blocks. Note that although Bump3D is synthetic, it resembles the
flow through a pipe with outlets on the sides.

(a) Geometry

Block ID Size
0 224 × 64 × 80
1 16 × 16 × 16
2 16 × 32 × 16
3 16 × 48 × 16
4 16 × 64 × 16

(b) Block Sizes

Figure 1: Illustration of the geometry of the Bump3D grid
with 5 blocks and its corresponding block sizes.

2.1 Greedy Algorithm
The greedy algorithm [20] chooses the largest unassigned block (i.e.
the maximum number of grid cells) and the most underload parti-
tion at any step. If the block exceeds the remaining capacity of the
partition, a sub-block is cut off to fill the remaining capacity and the
remainder is added to the list of unassigned blocks. Otherwise, the
entire block is assigned to that partition. The algorithm terminates
when all blocks have been assigned. To minimize communication
volume, the greedy algorithm always cuts across the longest edge.

In the greedy strategy, the cut position is round up to an integer,
which can result in load imbalance. For instance, if the largest block
has a size of 8× 8× 32 and the average workloadW = 544, splitting
along the longest edge at z = 8 or 9 would introduce 6.75% load
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imbalance. Evenworse, the algorithmmay fail if the smallest surface
of a block has more cells thanW . To address this limitation, we
propose the following solution. Given an imbalance tolerance ϵ , a
block of size Nx ×Ny ×Nz , Nx < Ny < Nz , and remaining capacity
R of the most underload partition, if a cut position cz satisfying
|R − NxNycz | < ϵW cannot be found along the longest edge, the
algorithm traverses possible cut positions cz and cy in the longest
and second longest direction tominimize the difference |R−Nxcycz |.
Once cut positions are located, the block is cut into four sub-blocks
and a block of size Nxcycz is assigned to the partition.

We denote the greedy algorithm [20] with the above fix as pure
greedy (PG). This algorithm still has two drawbacks. First, when
the prescribed load imbalance tolerance is small, it may create too
many small blocks and increase both the communication volume
and number of edge cuts. Second, the arrangement of small blocks
does not respect the connectivity of blocks and results in increased
communication volume. As seen from Figure 2a and Table 1, this
algorithm creates small blocks at the end of the original large block
and also result in large communication volume.

Table 1: Partition metrics of different algorithms for the
Bump3D grid when P = 16. The latency and bandwidth are
set to 10−5 (s) and 109 (bytes/s).
Algorithm Load imbalance Total Total Total

ratio volume edge cuts cost
PG 0.035 2.19E+06 60 2.79E-3
METIS 1 0.214 1.72E+07 138 3.35E-3
METIS 2 0.103 2.47E+06 38 2.85E-3
REB 0.047 1.57E+06 66 2.23E-3
IF 0.035 1.61E+06 66 2.27E-3

2.2 Bottom-up Algorithm
The bottom-up algorithm decomposes the original blocks into
smaller sub-blocks and partitions them using a graph partitioner
(the sub-blocks are treated as vertices of a graph). Sub-blocks within
the same partition are merged after partitioning. Graph partition-
ers like METIS move vertices between partitions to achieve load
balance and reduce communication cost. If there are too few ver-
tices to move or the vertices have large differences in weight, the
graph partitioner may produce imbalanced partitions. Therefore, it
is desirable to have the number of small sub-blocks to be at least
several times the number of partitions and to be of equal size.

In this paper, we examine two strategies. Both strategies try to
create sub-blocks of size one-quarter of the average workloadW .
The first method is to decompose the original blocks into elemen-
tary blocks [1] i.e., blocks with only one boundary condition on
each surface. If the elementary block is still too large to fit in one
partition, it is further cut by our IF algorithm proposed in section
2.5. The second method is to directly decompose the large blocks
with IF. As shown in Figures 2c and 2d, different decomposition
strategies can result in very different partitions. Clearly, the first
method results in too many sub-blocks in this case. The second
method generates simple connectivities in the graph of sub-blocks
and therefore easier to partition. Note that in Figure 2d, the four
original small blocks are grouped with their connected sub-blocks
in one partition. This shows that the graph partitioner preserves

(a) PG (b) IF

(c) METIS, elementary cuts (d) METIS, greedy cuts

(e) REB (f) REB α = 10−4

Figure 2: Partitions created by the different algorithms for
the Bump3D grid when P = 16. Blocks of the same color be-
long to the same partition.

the connectivity between blocks. However, it is also prone to load
imbalance and large communication cost compared with the other
algorithms as seen from Table 1.

2.3 Measure of Communication
The commonly used metrics for communication in both graph par-
titioning and domain decomposition are the total communication
volume and the total number of edge cuts. Top-down approaches
try to minimize the total volume but not the total number of mes-
sages. However, in some cases, latency can be more important than
volume. The time to send a message between two nodes consists
of two components – startup time (or latency) and the time for
sending or receiving data which is proportional to the length of the
message. The cost of sending a message can be approximated by
the α − β model as,

tm = α + Smsg/β, (1)
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where α denotes the latency, Smsg is the size of the message in
bytes, and β is the bandwidth of the network. Summing this cost
over all the messages results in the following total cost.

Total cost = α · Total Cuts + Total Volume
β

Therefore, the impact of communication volume and edge cuts
on the total cost depends on the chosen network’s latency and
bandwidth. For instance, in Table 1, the second partition created
by METIS has fewer edge cuts but a large communication volume.
The total cost based on specific α and β enables us to evaluate the
partition’s quality against other algorithms.

For a block2block boundary with surface area A, the communi-
cation cost tb2b (A) is given by

tb2b (A) = α +
A · #halo · Scell

β
. (2)

The number of halo layers (#halo) and the size of data per grid cell
(Scell) depend on the specific solver running on the partition. Using
Equation 2, the communication cost of a block can be computed by
summing the cost of all its block2block boundaries.

Note that we use the α − β model solely as a cost function to
capture both the communication volume and edge cuts rather than
as a prediction of the actual communication time. Such a prediction
would not be realistic since this model’s simple formulation is
derived from several ideal assumptions about the network such
as free of congestion, minimal queue lengths, etc [10]. To profile
the communication time accurately, more realistic models such as
logGPS [11] can be used and is beyond the scope of this work.

2.4 Find a Cut of Block
The elementary operation in partitioning a grid is to cut off a sub-
block of a given workload from a block. The function find_min_cut
shown in Algorithm 1 chooses the cut that adds the minimum
communication cost δtcut among all possible cutting positions
allowed by the imbalance tolerance, ϵ .

Algorithm 1 Find the cut of a block to fit in a given workload
1: function find_min_cut(B,Wcut , ϵ , cut, p)
▷ B: block to be cut.
▷Wcut : workload to be cut off
▷ ϵ : tolerance
▷ cut: data structure for cut info
▷ p: current partition (optional input, empty by default)

2: δtmin = ∞

3: for i = x, y, z do
4: Get area of i’s norm face Ai
5: posFloor = floor(Wcut (1 − ϵ )/Ai )
6: posCeil = ceiling(Wcut (1 + ϵ )/Ai )
7: for pos∈[posFloor, posCeil] do
8: δtcut =

∑
b2b ∋pos

α + tb2b (Ai ) −
∑
Bi ∈p

tb2b (cut,Bi )

9: if δtcut < δtmin then
10: δtmin = δtcut
11: cut.pos = pos

The communication cost of cutting a block, δtcut is computed in
line 8 of Algorithm 1. The first term includes the latency increase if
the cut splits any block2block boundary on the orthogonal surfaces
(each cutting plane is orthogonal to four surfaces of a block). Adding
this term allows the algorithm to align the sub-blocks’ boundary
with block2block boundaries. The second term adds the commu-
nication cost of the new surface created by the cut. When the cut
sub-block is assigned to partition p, the block2block boundaries
in contact with the blocks in p become shared memory accesses,
which is much faster than inter-node communication and therefore
subtracted from δtcut in the last term. The last term takes advan-
tage of the blocks’ connectivity to reduce overall communication
volume.

2.5 Cut Large Blocks
Given a large block that fits evenly inmultiple partitions, we present
two approaches for cutting such blocks namely, Recursive Edge
Bisection (REB) and Integer Factorization (IF ).

2.5.1 Recursive Edge Bisection (REB). The classical REB re-
cursively bisects the block at the longest edge until each resulting
sub-block fits in a partition. Such a bisection ignores the block2block
boundaries. As a result, when a bisection intersects a block2block
boundary, it increases the edge cut. We improve REB by using
Algorithm 1 to find the cut position such that it is aligned with
block2block boundaries. Our modified REB is outlined in Algorithm
2. Note that the imbalance from the first several bisections may
accumulate to the final sub-blocks and lead to overload partitions
violating the imbalance tolerance. A fix is proposed in section 2.7.

Algorithm 2 Recursive Edge Bisection
1: function reb_block(B, np )
▷ Block B fits in np partitions.

2: if np == 1 then
3: return
4: W = B’s workload
5: Wl =W ·

⌊np /2⌋
np ,Wr =W −Wl

6: find_min_cut(B,Wl , ϵ , cut)
7: cut B into Bl with workloadWl and Br with workloadWr
8: reb_block(Bl , ⌊np/2⌋)
9: reb_block(Br , ⌈np/2⌉)

Each bisection found by Algorithm 1 introduces minimum com-
munication cost at that step. Therefore, REB bounds communication
in a greedy fashion. The partition created by REB for Bump3D grid
is shown in Figure 2e and the corresponding metrics in Table 1.
REB produces the least communication volume compared to the
other algorithms. Figure 2f shows the decomposition created by
REB with a latency, α = 10−4s . Given the large latency, edge cuts
become the dominating metric for communication. As a result, the
algorithm now aims to reduce edge cuts at the cost of increased
communication volume.

2.5.2 Integer Factorization (IF). Given the number of parti-
tions, np for a large block, a factorization np = nx ·ny ·nz according
to the block’s length ratio, i.e., nx : ny : nz ≈ lx : ly : lz , can be an
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optimum decomposition for that block. However, there are two lim-
itations to this decomposition. First, when np is prime, the unique
factorization 1 · 1 · np may not be proportional to the length ratio.
Second, it may split block2block boundaries and increase the com-
munication cost. In [1], when np is prime, a sub-block is cut off
to feed one partition and the algorithm searches for an optimum
factorization of np − 1 to decompose the remaining sub-block. We
propose a more generalized solution in Algorithm 3 to address both
limitations.

Algorithm 3 Integer Factorization
1: function factorize_block(B, np )
▷ Block B fits in np partitions.

2: if np == 1 then
3: return
4: t0min = ∞, t

1
min = ∞

5: for factorization nx · ny · nz = np do
6: if tb2b (B,nx ,ny ,nz ) < t0min then
7: t0min = tb2b (B,nx ,ny ,nz )
8: n0x = nx ,n

0
y = ny ,n

0
z = nz

9: find_min_cut(B,W , ϵ , cut)
10: for factorization nx · ny · nz = np − 1 do
11: t1 = max(tb2b (Bcut ), tb2b (Br em ,nx ,ny ,nz ))
12: if t1 < t1min then
13: t1min = t1

14: if t0min < t1min then
15: cut B by n0x ,n0y ,n0z
16: else
17: factorize_block(Br em , np − 1)

Algorithm 3 compares two cases. First, decompose the block
B according to the factorization of np which introduces the min-
imum communication cost (lines 4-8). The cost of a factorization
tb2b (B,nx ,ny ,nz ) is the maximum communication cost among
nx · ny · nz sub-blocks. Second, cut off a sub-block, Bcut of average
workload and decompose the remaining sub-block Br em by the
factorization of np − 1 which results in minimum overall communi-
cation cost (lines 9-13). If the first case costs less than the second, the
factorization for block B is the optimum decomposition. Otherwise,
the same comparison repeats on Br em . Note that the imbalance
problem mentioned in Section 2.1 also exists here. Therefore, the
optimum decomposition of the blocks does not guarantee a load
imbalance ratio below the given tolerance.

Figure 2b and Table 1 illustrate the partition created by IF. Each
cut in IF cuts through the entire block. Therefore, compared with
REB, IF is more apt to align block2block boundaries and reduces
the edge cuts.

2.6 Group Small Blocks
The block2block connections between blocks require inter-node
communication by default. By grouping several small blocks into
one partition, we can convert some of this communication into
sharedmemory accesses and reduce the overall communication cost.
Therefore, the grouping algorithm should group blocks connected

by large block2block boundaries in the same partition. Keeping this
goal in mind, we propose the following two algorithms.

2.6.1 Cut-Combine-Greedy (CCG). After assigning a small block
to an empty partition, there might still be room to fit additional
blocks. As shown in Algorithm 4, CCG traverses all the unassigned
blocks to find a block or sub-block that fits in the remaining ca-
pacity such that the communication cost is minimized. In line 6,
tb2b (B,Bi ) denotes the communication cost of all block2block con-
nections between block B and Bi . The communication cost saved
by adding a sub-block to a partition is computed using δtcut in
line 8 of Algorithm 1. This procedure is repeated until the given
partition, p is full. This algorithm is a greedy heuristic since each
company only minimizes the communication cost for that step but
not the final partition.
Algorithm 4 Find company to fit in one partition
1: function find_min_company(Wub , cmpny, p)
▷Wub : upper bound of the company’s work load
▷ cmpny: ID of the company block
▷ p: the partition to be filled

2: δtmin = ∞

3: for block B ∈ {unassigned blocks} do
4: Get B’s work loadW
5: ifW <Wub then
6: δt = −

∑
Bi ∈p

tb2b (B,Bi )

7: if δt < δtmin then
8: δtmin = δt
9: cmpny = B.ID
10: else
11: find_min_cut(B,Wub , ϵ , cut, p)
12: if cut.δt < δtmin then
13: δtmin = δt
14: cmpny = cut.ID

2.6.2 Graph-Growth-Sweep (GGS). GGSfirst assigns each empty
partition a small block in lines 4-5 of Algorithm 5. Using the small
block as a seed, it starts the graph growing procedure for each
partition. If moving a block can reduce the communication cost,
i.e., B.δt < 0 in line 13, it will be saved for that partition. The saved
blocks are sorted by the amount of communication reduced and
then assigned to a partition until the partition is full. All the parti-
tions are swept repeatedly until no more blocks can be assigned.
After the sweep, the unassigned blocks, if any, are partitioned using
the pure greedy algorithm.

2.7 Combined Algorithms and Partition
Adjustment

We propose new partitioning algorithms by combining the methods
for cutting large blocks and grouping small blocks. Following the
streamline in [1], any block larger than the average workload is
first truncated to a main sub-block which fits evenly in multiple
partitions and a residual sub-block. The main sub-block is cut and
assigned to partitions using either REB or IF. The residual sub-
blocks together with the remaining small blocks are grouped using
CCG or GGS.
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Algorithm 5 Graph-Growth-Sweep
1: Assign each partition a small block
2: while blocks can be assigned do
3: for all p ∈ P do
4: if p.empty() then
5: Assign a block to p
6: else
7: for all Block B connected to blocks in p do
8: if B fits in p’s room then
9: B.δt = −

∑
Bi ∈p

tb2b (B,Bi )

10: if B.assigned() then
11: pB := B’s partition
12: B.δt = B.δt +

∑
Bi ∈pB

tb2b (B,Bi )

13: if B.δt < 0 then
14: Save B in block array blks
15: Sort blks in ascending order of blks[i].δt
16: while !p.full() and i < blks .size() do
17: Assign blks[i] to p
18: i++

Both REB and IF may generate blocks that exceed the prescribed
load imbalance tolerance at the trade-off of reducing communica-
tion cost. In case the computation becomes too imbalanced, we use
a greedy heuristic to adjust the workload between overload and
underload partitions. We denote a shift between two partitions as
a sub-block cut from a block in one partition and moved to the
other partition. The adjustment heuristic sorts all possible shifts
from overload partitions to underload partitions according to its
communication cost using an efficient Bucket List structure intro-
duced in [8]. The adjustment starts from the shift that results in
the minimum communication cost and updates the partition and
Bucket List until all the overload partitions are within the given
imbalance tolerance.

3 EXPERIMENTAL SETUP
To examine the impact of the proposed algorithms, we apply our
partitioners to two multi-block structured grids and simulate a
benchmark solver with the resulting partitions. The experiments
are conducted on the Mira supercomputer. We measure the latency
and bandwidth of Mira and use that as the input for our domain
decomposition algorithms. The load imbalance tolerance, ϵ is set to
5%. This section describes the geometries of the grids, benchmark
solver, and Mira supercomputer.

3.1 Multi-block Structured Grids
We refine the Bump3D grid 4 times in each direction. The sizes
are shown in Table 2. This grid stresses the partitioner’s ability to
cut a large block. The second grid is based on the SpaceX Falcon
Heavy rocket shown in Figure 3a. The complex geometry results in
a large number of blocks with varying block workloads as shown
by the block distribution in Figure 3b. This grid is chosen to test
both the effect of cutting large blocks and the result of grouping
small blocks.

Table 2: Refined blocks of the Bump3D grid.
Block ID 0 1 2 3 4
Workload 7.3E+7 2.6E+5 5.2E+5 7.8E+6 1.0E+6

(a) Geometry
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Figure 3: SpaceX Falcon Heavy grid consisting of 769 blocks.

3.2 Case study: Jacobi solver
The experiments are conductedwith an hybridMPI+OpenMP Jacobi
solver. The computation is a finite difference scheme using a 5-point
stencil in each direction. Two halo layers extend outside the blocks’
boundary. The communication consists of the exchange of one
double precision variable i.e., 8 bytes per halo cell. The numerical
experiment is done in the manner as outlined in Algorithm 6 for 512
iterations and the average running time per iteration is reported.

The function pack_halo_to_buffer packs the data to be sent into a
1D buffer. The function unpack_buffer_to_halo unpacks the buffer’s
data to the halo region. Both functions are executed by all the
OpenMP threads in parallel. The master thread calls non-blocking
MPI routines i.e., MPI_Isend, MPI_Irecv, and MPI_Waitall for inter-
node communication. All the threads exchange the halos inside
the same partition via shared memory copy. This step is often
overlapped with inter-node communication. The computation is
done by all threads in parallel where the blocks in one partition
are evenly split among the threads. There are OpenMP barriers
between each step for synchronization.

3.3 Platform and Architecture
We evaluate the proposed partitioning schemes on the Mira super-
computer, i.e. the petascale IBM BlueGene/Q cluster at the Argonne
National Lab. Each node has a PowerPC A2 processor with 16 cores
clocked at 1.6 GHz with 1GB DDR3 memory. The interconnect is
a 5D torus. We measure the latency and bandwidth of Mira using
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Algorithm 6 Numerical performance experiment
for i = 1→ NSTEP do
▷ #pragma omp for

pack_halo_to_buffer
▷ #pragma omp barrier
▷ #pragma omp master

update_halo
▷ #pragma omp for

copy_halo_shared_mem
▷ #pragma omp barrier
▷ #pragma omp for

unpack_buffer_to_halo
▷ #pragma omp barrier
▷ split blocks evenly among threads

compute
▷ #pragma omp barrier

a ping-pong benchmark, i.e. timing two adjacent nodes exchang-
ing messages with non-blocking MPI routines and fitting Equation
1 with the least squares method. The latency and bandwidth are
measured as 1.73E-05 s and 1.77E+09 bytes/s respectively.

4 RESULTS AND DISCUSSION
In this section, we first evaluate the quality of the partitioners.
Specifically, we compare the communication volume, the number of
edge cuts, load imbalance ratio, number of sub-blocks created, and
the total communication cost of the decomposition generated by the
different algorithms, namely top-down pure greedy (PG), bottom-up
graph algorithm (METIS), recursive edge bisection for cutting large
blocks with cut combine greedy strategy for grouping small blocks
(REB+CCG), REB with graph growth sweep for grouping small
blocks (REG+GGS), integer factorization for cutting large blocks
with CCG (IF+CCG), and IF with GGS (IF+GGS). Then, we compare
their performance coupled with the OpenMP+MPI hybrid Jacobi
solver. For large scale simulations, the applications are typically run
on at leastO (103) nodes. Therefore, we only report the performance
results from 1024 nodes.

4.1 Quality of multi-block structured mesh
partitioners

4.1.1 Bump3D. Table 3 compares the quality of the different
heuristics for the Bump3D grid on up to 4096 nodes of Mira. Since
the decomposition of Bump3D is dominated by cutting a single
large block, REB+CCG and REB+GGS have similar results. The
same is true for IF+CCG and IF+GGS. Across the board, all the
schemes result in significantly less total communication volume
compared to PG at all processor counts. On the other hand, METIS
has the highest number of total edge cuts. This is because METIS
creates an excessive number of sub-blocks and consequently, both
PG and METIS have a higher total communication cost compared
to the proposed algorithms (REB and IF). The results also confirm
the fact that REB is better at reducing communication volume while
IF is better at reducing edge cuts.

The total communication cost captures the effect of both commu-
nication volume and edge cuts as given by Equation 1. For instance,

on 64 nodes PG creates less cut edges but more communication
volume than all the other algorithms. The total cost indicates that in
this case communication volume plays a more important role than
edge cuts and PG results in a higher cost than the other algorithms.
On the other hand, on 4096 nodes, IF has the lowest communication
cost. This indicates that at the highest processor count used for the
experiments in this paper, reducing the number of total edge cuts is
more critical than reducing the total communication volume. This
further validates the need for a portable partitioner that is driven
by a flexible cost model.

4.1.2 FalconHeavy. Table 4 compares the quality of the different
heuristics for the Falcon Heavy grid on up to 4096 nodes of Mira. For
64-256 nodes, METIS results in the lowest communication volume,
edge cuts, and communication cost. Second toMETIS are algorithms
using CCG to group small blocks. To explain this, we introduce two
parameters nsm and %npsm . nsm denotes the average number of
small blocks that remain after cutting large blocks and %npsm is
the percentage of partitions filled with small blocks. As seen from
Table 4, for 64-256 nodes, more than 60% of the partitions are made
up of small blocks and such partitions have more than 4 blocks on
average. Therefore, the partitioner’s ability to group small blocks
determines the partition’s quality. As a graph partitioner, METIS is
good at exploiting connectivity to reduce communication cost. As
shown in Figure 4, although METIS creates more halos than other
algorithms, it maps a large percentage of halo exchange to shared
memory copy. A similar trend can also be observed for CCG, which
uses connectivity in a greedy fashion to reduce communication. PG
does not take into account the blocks’ connectivity and introduces
the highest communication cost. The small blocks’ influence damps
as the number of nodes increases. For 512 to 4096 nodes, REB+GGS
produces the optimum partition because the sweeping process
in Algorithm 5 effectively avoids cutting blocks or introducing
communication. On the other hand,METIS loses its strength at large
node count and leads to the most edge cuts and communication
cost due to its creation of too many sub-blocks.
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Figure 4: The total halo volume of PG, REB+CCG, REB+GGS,
and METIS from left to right for the Falcon Heavy grid.
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Table 3: Partitioner quality for the Bump3D grid on Mira.

Number of processors, P 64 128 256 512 1024 2048 4096
Load imbalance PG 0.035 0.046 0.045 0.048 0.042 0.047 0.050
Load imbalance METIS 0.256 0.517 0.491 0.516 0.226 0.253 0.257
Load imbalance REB+CCG 0.035 0.050 0.044 0.075 0.106 0.100 0.134
Load imbalance REB+GGS 0.035 0.050 0.044 0.075 0.106 0.100 0.122
Load imbalance IF+CCG 0.035 0.019 0.035 0.035 0.043 0.086 0.214
Load imbalance IF+GGS 0.035 0.019 0.035 0.035 0.043 0.086 0.214
Number of sub-blocks PG 65 211 275 601 1090 2505 4855
Number of sub-blocks METIS 89 166 421 866 1638 3532 7103
Number of sub-blocks REB+CCG 67 131 259 514 1025 2048 4096
Number of sub-blocks REB+GGS 67 131 259 514 1025 2048 4096
Number of sub-blocks IF+CCG 67 129 258 513 1025 2048 4096
Number of sub-blocks IF+GGS 67 129 258 513 1025 2048 4096
Communication volume PG 1.38E+08 2.94E+08 4.59E+08 9.32E+08 9.81E+08 8.21E+08 1.06E+09
Communication volume METIS 5.28E+07 7.16E+07 9.93E+07 1.36E+08 1.75E+08 2.35E+08 3.02E+08
Communication volume REB+CCG 4.96E+07 6.89E+07 9.05E+07 1.24E+08 1.72E+08 2.33E+08 3.03E+08
Communication volume REB+GGS 4.94E+07 6.86E+07 9.04E+07 1.24E+08 1.71E+08 2.33E+08 3.02E+08
Communication volume IF+CCG 5.63E+07 1.24E+08 1.37E+08 1.47E+08 1.67E+08 3.25E+08 3.93E+08
Communication volume IF+GGS 5.61E+07 1.24E+08 1.37E+08 1.47E+08 1.67E+08 3.25E+08 3.93E+08
Edge cuts PG 220 1108 1592 3794 8340 18186 41188
Edge cuts METIS 538 1052 2728 5790 11312 25548 54136
Edge cuts REB+CCG 336 746 1616 3278 6744 14282 29086
Edge cuts REB+GGS 332 742 1614 3276 6778 14180 29104
Edge cuts IF+CCG 276 442 1012 2476 5388 9938 22352
Edge cuts IF+GGS 272 438 1010 2474 5386 9938 22288
Communication cost PG 8.15E-02 1.85E-01 2.87E-01 5.91E-01 6.97E-01 7.77E-01 1.31E+00
Communication cost METIS 3.91E-02 5.85E-02 1.03E-01 1.77E-01 2.94E-01 5.74E-01 1.10E+00
Communication cost REB+CCG 3.38E-02 5.17E-02 7.89E-02 1.27E-01 2.13E-01 3.78E-01 6.73E-01
Communication cost REB+GGS 3.36E-02 5.15E-02 7.88E-02 1.27E-01 2.14E-01 3.76E-01 6.73E-01
Communication cost IF+CCG 3.65E-02 7.77E-02 9.46E-02 1.26E-01 1.87E-01 3.55E-01 6.07E-01
Communication cost IF+GGS 3.63E-02 7.75E-02 9.45E-02 1.26E-01 1.87E-01 3.55E-01 6.06E-01

Note that PG results in comparable or even less cost compared
with our algorithms at 1024 and 2048 nodes. Unlike Bump3D where
the largest block occupies the majority of the partitions, the largest
block of Falcon Heavy only occupies 12 and 25 partitions on 1024
and 2048 processors respectively. As a result, PG’s greedy heuristic
of cutting at the longest edge leads to a near optimum partition.
However, at 4096 nodes, the largest block occupies 51 partitions
and PG’s disadvantage of creating excessive blocks re-appears and
increases the communication cost.

4.2 Performance and Scalability
Figure 5 shows the running time of the different algorithms coupled
with the Jacobi solver for the Bump3D and Falcon Heavy grids. The
time consists of communication, computation, and others which is
mainly the time for packing and unpacking the halos for communi-
cation (refer to Algorithm 6). As predicted by the communication
cost in Table 3, METIS, REB and IF result in significantly better
performance compared to PG for the Bump3D grid. The best perfor-
mance is from the partition created by IF which achieves 5.5 − 15×
speedup for communication and 3× overall speedup compared to
PG. Note that in Table 3, only PG keeps the load imbalance within
tolerance (ϵ = 5%) for all cases while METIS and IF cause more

than 20% imbalance at 4096 nodes. Unlike PG, REB and IF don’t pay
the penalty of creating an excessive number of sub-blocks which
in turn results in increased communication cost at the expense of
increased load imbalance. Although METIS does create more blocks
than PG, its lower communication volume indicates that a large
amount of communication between blocks goes through the shared
memory. Therefore, this trade-off between load balance and total
communication cost is desirable in this case.

The trend for Falcon Heavy as seen from Figure 5 is likewise con-
sistent with the communication cost estimation in Table 4 except
for METIS at 4096 nodes. METIS achieves the worst performance
at 1024 and 2048 nodes as predicted. However, the unexpected
reduction of its communication time at 4096 nodes requires fur-
ther investigation. PG leads to slightly better performance than
CCG algorithms and IF+GGS at 1024 and 2048 nodes but has the
worst runtime at 4096 nodes. The best performance comes from
REB+GGS, which achieves 1.5× overall speedup and 2.1× better
communication time compared to PG.

Note that the communication time stops scaling at 4096 nodes
for the Jacobi solver while the communication cost estimated by the
α − β model still continues to scale. As remarked earlier, the α − β
model is only used as a cost function rather than as a prediction
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Table 4: Partitioner quality for the SpaceX Falcon Heavy grid on Mira.

Number of processors, P 64 128 256 512 1024 2048 4096
nsm 12 7.1 4.3 2.6 1.7 1.6 1.8
%npsm 100% 84.3% 69.5% 57.2% 41.5% 22% 9.8%
Load imbalance PG 0.005 0.028 0.022 0.040 0.047 0.049 0.049
Load imbalance METIS 0.097 0.210 0.283 0.311 0.729 0.973 0.236
Load imbalance REB+CCG 0.100 0.100 0.100 0.097 0.100 0.089 0.098
Load imbalance REB+GGS 0.049 0.049 0.034 0.048 0.047 0.066 0.118
Load imbalance IF+CCG 0.100 0.100 0.100 0.059 0.097 0.078 0.099
Load imbalance IF+GGS 0.049 0.049 0.034 0.048 0.059 0.082 0.109
Number of sub-blocks PG 769 789 847 995 1466 2445 4585
Number of sub-blocks METIS 810 843 1005 1527 2652 4715 9006
Number of sub-blocks REB+CCG 787 817 927 1147 1668 2620 4620
Number of sub-blocks REB+GGS 769 789 847 993 1477 2443 4443
Number of sub-blocks IF+CCG 787 817 927 1147 1668 2617 4614
Number of sub-blocks REG+CCG 769 789 847 993 1486 2441 4429
Communication volume PG 3.00E+08 3.05E+08 3.18E+08 3.45E+08 4.03E+08 5.17E+08 7.41E+08
Communication volume METIS 8.17E+07 1.20E+08 2.10E+08 2.85E+08 3.96E+08 5.18E+08 6.76E+08
Communication volume REB+CCG 1.16E+08 1.54E+08 2.41E+08 3.09E+08 4.06E+08 5.15E+08 6.93E+08
Communication volume REB+GGS 2.59E+08 2.45E+08 2.71E+08 3.16E+08 4.04E+08 5.02E+08 6.64E+08
Communication volume IF+CCG 1.16E+08 1.54E+08 2.41E+08 3.09E+08 4.07E+08 5.21E+08 6.92E+08
Communication volume IF+GGS 2.59E+08 2.45E+08 2.71E+08 3.16E+08 4.06E+08 5.42E+08 6.74E+08
Edge cuts PG 3718 3826 4216 5330 9268 17652 37598
Edge cuts METIS 944 1466 3240 6890 14412 29418 57834
Edge cuts REB+CCG 1368 1726 3398 5312 9504 16568 31428
Edge cuts REB+GGS 3266 3266 3626 4622 8540 15392 30286
Edge cuts IF+CCG 1368 1726 3410 5358 9394 16814 32746
Edge cuts IF+GGS 3266 3266 3626 4638 8822 16294 30508
Communication cost PG 2.33E-01 2.38E-01 2.52E-01 2.87E-01 3.87E-01 5.96E-01 1.07E+00
Communication cost METIS 6.24E-02 9.27E-02 1.74E-01 2.80E-01 4.72E-01 8.00E-01 1.38E+00
Communication cost REB+CCG 8.92E-02 1.17E-01 1.95E-01 2.66E-01 3.93E-01 5.76E-01 9.33E-01
Communication cost REB+GGS 2.03E-01 1.94E-01 2.15E-01 2.58E-01 3.75E-01 5.49E-01 8.97E-01
Communication cost IF+CCG 8.92E-02 1.17E-01 1.95E-01 2.67E-01 3.92E-01 5.84E-01 9.56E-01
Communication cost IF+GGS 2.03E-01 1.94E-01 2.15E-01 2.58E-01 3.81E-01 5.87E-01 9.07E-01

of the communication runtime. Nevertheless, it is still worthwhile
to analyze the gap between the cost model and the actual mea-
sured time. Two factors may contribute to this gap. First, in our
performance experiments, we ignore the topology of the network.
Communication cost between any two partitions is estimated based
on the latency and bandwidth values measured using a ping-pong
benchmark between two adjacent nodes. However, two partitions
may be mapped to two nodes that are physically separated by sev-
eral hops. Second, some fraction of the total communication time is
spent on waiting for other processes to issue their messages sends.
This idle time may take up to 80% of the total communication time
[16] for some applications. The waiting time, in turn, depends on
several factors such as the overall time of communicating processes,
load imbalance, and the congestion in the network. Nevertheless, as
observed by the experimental data, the cost function is still a pow-
erful and useful predictor for domain decomposition and results in
better partitioning than the current state-of-the-art heuristics for
multi-block structured grids.

5 RELATEDWORK
Among the top-down strategies, the greedy heuristic [20] is the most
widely adopted method. REB [4] is a good alternative to the former.
In [2], a greedy heuristic is combined with REB. At any step, the
largest block is assigned to the most underloaded partition. After
assigning all blocks, if a certain number of partitions is overloaded,
then the same number of large blocks is bisected in half at the
longest edge. This process is repeated until all partitions are within
the load imbalance tolerance. It is hard to say if this hybrid approach
is better than the classical greedy heuristic [20] since no comparison
has been made.

A decomposition according to the block’s aspect ratio is optimum
in the number of edge cuts. This idea is used in [1] for 2D grids.
Compared to REB [4], this strategy results in less imbalance but
more communication volume. No performance comparison is made.
More recently, this algorithm has been extended to 3D problems
[15]. Given the number of partitions, all their test grids are made of
blocks larger than the average workload. Therefore, the grouping
of small blocks is not clearly shown.
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Figure 5: The average running time of 1 iteration of the Jacobi solver coupled with the different paritioners for the Bump3D
(left) and Falcon Heavy (right) grids. Each bar from the left to right represent the performance of the solver coupled with PG,
METIS, REB+CCG, IF+CCG, REB+GGS, and IF+GGS respectively.

In [19], large blocks are cut into cubic sub-blocks as much as pos-
sible because, for a fixed volume, the cubic shape has the minimum
surface area. The residual blocks are assumed to have a minor ef-
fect on performance. Coupled with a CFD solver, they demonstrate
1.2 − 1.4× speedup up to 800 processes against the greedy heuris-
tic [20]. However, the communication time stops scaling between
300-400 processes.

In the above works [1, 2, 4, 19, 20], the communication volume
can be viewed as the cost function. In [6, 7], the total running time
is chosen as the cost function and balanced by grouping small sub-
blocks with a greedy heuristic similar to [20]. The communication
time is estimated using the bandwidth of the network. As discussed
in Section 4.2, the actual communication time can be larger than
the cost estimated using bandwidth and latency alone. Therefore,
the estimated total running time may not provide a good insight
for designing partitioners.

Compared to top-down strategies, unfortunately, there is con-
siderably limited literature on bottom-up strategies for multi-block
structured grids. The idea is first proposed in [17] where the orig-
inal blocks are split into small sub-blocks, the number of which
needs to be three times more than the partitions. Then, a graph
partitioner is used to partition the small blocks. This algorithm is
compared with top-down algorithms on a 2D multi-element and
demonstrates improved performance. More recently, a new method
for decomposing the original blocks is proposed in [14] which re-
sults in fewer blocks and communication volume than decomposing
the blocks with REB. The effect on the performance of a solver is
not yet assessed.

To the best of the author’s knowledge, this paper is the first of its
kind to design portable multi-criteria partitioners for multi-block
structured grids using a cost function which not only accounts for
both the communication volume and edge cuts but also takes into
account the network’s latency and bandwidth.

6 CONCLUSIONS
We use the α − β model to realize a new cost function to partition
structured multi-block grids. Based on the cost function, we pro-
posed two new methods to cut large blocks, namely the Recursive
Edge Bisection (REB) and Integer Factorization (IF). REB recursively
bisects a block at the position that introduces the minimum commu-
nication cost. IF decomposes a block according to the factorization
of the number of partitions assigned which minimizes the commu-
nication cost introduced by cutting blocks. We also propose two
methods to group small blocks, Cut-Combine-Greedy (CCG) and
Graph-Growth-Sweep (GGS). CCG fills a partition by searching for
a block or a cut-off sub-block which converts inter-node communi-
cation into shared memory accesses. This method works very well
when the small blocks occupy a large percentage of the partitions.
GGS first assigns one small block to each empty partition and then
repeatedly performs graph growing until no more blocks can be
assigned. It avoids cutting blocks as much as possible and results
in less communication cost than CCG at large node counts. New
domain decomposition algorithms are derived by combining REB/IF
with CCG/GGS. We apply our algorithms to partition a synthetic
grid, Bump3D and a grid based on SpaceX’s Falcon Heavy rocket
with 769 blocks with varying block distribution. The partitions are
tested with a hybrid MPI+OpenMP Jacobi benchmark solver on the
Mira supercomputer. Compared with the popular greedy heuristic,
our algorithms result in 5.5 − 15× speedup in communication for
Bump3D and 1.5× speedup for Falcon Heavy at 4096 nodes.
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