
Portal: A High-Performance Language and
Compiler for Parallel N-body Problems

Laleh Aghababaie Beni, Saikiran Ramanan, Aparna Chandramowlishwaran
University of California, Irvine

laghabab@uci.edu, ramanans@uci.edu, amowli@uci.edu

Abstract—There is a big gap between the algorithm one
designs on paper and the code that runs efficiently on a parallel
system. Our goal is to combine the body of work in compilers,
performance optimization, and the domain of N-body problems
to build a system where domain scientists can write programs
at a high level while attaining performance of code written
by experts at the low level. This paper presents Portal, a
domain-specific language and compiler designed to enable high-
performance implementations of N-body problems on modern
multicore systems.

Our goal in the development of Portal is three-fold, (a) to
implement scalable, fast algorithms that have O (n log n) and
O (n) complexity, (b) to design an intuitive language to enable
rapid implementations of a variety of problems, and (c) to
enable parallel large-scale problems to run on multicore systems.
We target N -body problems in various domains from machine
learning to scientific computing that can be expressed in Portal
to obtain an out-of-the-box optimized parallel implementation.
Experimental results on 6 N -body problems show that Portal
is within a factor of 5% on average of expert hand-optimized
C++ code on a dual-socket AMD EPYC processor. To our
knowledge, there are no known libraries or frameworks that
implement parallel asymptotically optimal algorithms for the class
of generalized N -body problems and Portal aims to fill this
gap. Moreover, the Portal language and intermediate algorithm
representation are portable and easily extensible to different
platforms.

Index Terms—Domain-specific language, LLVM, N -body prob-
lems, tree-based algorithms.

I. INTRODUCTION

Modern machines are becoming increasingly more complex

resulting in even the most advanced compilers to fail to gener-

ate the best-optimized code. Moreover, Proebsting’s Law [1]

states that improvements in compiler technology double the

performance of typical programs every 18 years. This has

resulted in the trend of expert high-performance programmers

who desire the best possible performance to write hand-tuned

and hand-optimized code that outperforms compiler generated

code. Unfortunately, this typically results in implementing a

single algorithm or problem, for one or a small subset of

architectures. Even if we just consider the domain of interest

in this paper, there are hundreds of N -body problems and it

is practically impossible to generate hand-optimized code for

every single one of them. Furthermore, hand-tuning is not only

tedious but also highly machine-specific. Given the trend that

architectures are constantly evolving makes these hand-written

codes obsolete.

Domain scientists who are experts in their particular domain

often lack expertise in parallel programming. In general,

scientists prefer to program in high-level languages which

allow concise expression of their problem. Matlab and Python

are two examples that are widely used in data analytics [2].

However, achieving performance requires computation at a low

level and in-depth knowledge of the underlying architecture.

These are two examples of the natural tension between the

software goals of performance and productivity. In the former,

we have performance programmers who sacrifice productiv-

ity for performance and in the latter, we have productivity
programmers whose main goal is rapid prototyping. This

motivates the need for an infrastructure to enable both high-
performance and high productivity.

To that end, we present Portal, a domain-specific language

and compiler embedded in C++ for yet another uncharted

domain of N -body problems. Our specific work on N -body

optimizations and tuning follows from the vast body of prior

work on hand-optimizing and tuning N -body algorithms and

applications in scientific particle simulations [3]–[5]. The

initial choice of the domain of N -body problems stems from

its applications in various domains ranging from scientific

computing simulations in molecular dynamics, astrophysics,

acoustics, fluid dynamics all the way to big data and machine

learning problems [6]–[8]. N -body methods were identified as

one of the original seven dwarfs or motifs [9] and are believed

to be important in scientific computations. There is potential

for big impact in this domain and general N -body applications

today are still orders of magnitude from optimal. Portal aims

to fill this gap.

The first goal in the development of Portal is to choose

optimal algorithms with time/accuracy guarantees. Big data

motivates fast approximate algorithms. To that end, Portal is

built on the top of the algorithmic framework PASCAL [10]

which utilizes tree data-structures and user-controlled pruning

or approximations to reduce the asymptotic runtime complex-

ity from being linear in the number of data points to be

logarithmic. PASCAL can generate prune and approximation

conditions for any number of operators making it easily

extensible to a large class of N-body problems. We describe

the algorithmic choices and the abstractions in PASCAL in

Section II.

Contributions and findings. This paper makes the follow-

ing contributions.

984

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00106

1) [Portal Language] How to best express N -body prob-

lems at a high-level representation? We design the Por-

tal language inspired by the mathematical formulation

of N -body problems. Such a high-level representation

described in Section III not only gives the compiler

freedom to apply transformations and optimizations but

also to choose an optimal algorithm.

2) [Real Code] How to translate from a high-level rep-

resentation to an efficient low-level code? We develop

a domain-specific compiler that chooses the optimal

algorithm and generates optimized and parallel vector

code for x86 architectures outlined in Section IV. Ex-

perimental results on 6 problems show that the programs

generated by Portal are within a factor of 5% (on

average) of expert hand-tuned code. Additionally, we

also compare the lines of code of Portal programs

against hand-optimized and library codes. For example,

k-nearest neighbors is written in 13 lines of Portal

code and achieves within 2 − 5% of expert hand-tuned

performance (Section V).

3) [Portal Validation] We also validate Portal against three

separate N-body problems (namely, 2-point correlation,

naive Bayes classifier, and Barnes-Hut) that have not

been hand-optimized and compare against state-of-the-

art libraries/packages. The parallel code generated by

Portal using optimal tree-based algorithms outperforms

libraries/packages such as scikit-learn [11] and ML-

PACK [12] by a factor of 15−165× for the computation

of 2-point correlation and naive Bayes classifier. For the

Barnes-Hut computation, we compare the performance

of Portal against FDPS [13] which is a high-performance

hand-optimized particle simulation framework in C++.

Portal achieves 70% better performance compared to

FDPS on a dual-socket AMD EPYC processor (Sec-

tion V).

This work, based on DSLs has the potential to allow for

interoperability and scalability of parallel fast tree-based N -

body problems which we believe will play a major role as we

approach exascale computing towards the end of the decade.

We show that a DSL with an appropriately high-level formu-

lation leads directly to both asymptotically fast algorithms and

their efficient parallel implementations on multicore systems.

Portal is available open-source at https://gitlab.com/Nbody-

Portal/Code.

II. BACKGROUND: N -BODY PROBLEMS

N -body problems are those where an update to a single

element in the system depends on every other element, making

these computations asymptotically O (
N2

)
. The most familiar

example arises in physical simulations which has the following

form.

∀q,
∑

r

K(xq, xr) · s(xr) , (1)

where s(xr) is the density of the reference point and

K(xq, xr) is an interaction kernel that specifies the physics of

the problem. For instance, the Laplace kernel, K(xq, xr) =
1

||xq−xr|| models electrostatic or gravitational interactions.

It turns out, this style of N -body problems arises in

other significant domains such as machine learning (ML) and

computational statistics which capture powerful reductions

beyond sum. Some examples of such problems are k-nearest

neighbors, range search, expectation maximization, Euclidean

minimum spanning tree, n-point correlation to name a few.

In the general form of N -body problems, a set of

m operators {op1, ..., opm} are applied to m datasets

(D1...Dm) using a kernel function, K, as follows.

op1, ..., opm K(x1, ..., xm) (2)

where x1 ∈ D1, ..., xm ∈ Dm. The common theme that brings

these problems from various areas under a single umbrella is

the insight that their inner-loop computations are analogous

and naively require O (Nm) operations to evaluate (where N
is the size of each dataset and m is the number of datasets).

This raises the question of how to compute these updates in

an efficient scalable fashion.

We re-use the algorithmic abstractions in PASCAL [10]

which generalizes the N-body problems under a single um-

brella. It consists of space partitioning trees, a prune/approx-

imate condition generator, and a multi-tree traversal scheme

which we describe in the following subsections.

A. Space-partitioning Trees
There exists a powerful class of space-partitioning tree-

based algorithms that can reduce the complexity of N -body

problems from O (
N2

)
to O (N logN) and even O (N) [7],

[14]. These algorithms use techniques such as approximation

and pruning to discard regions of space.

Two well-known algorithms in physics N-body simula-

tions are the Fast Multipole Method (FMM) [7] and Barnes-

Hut [14] that make use of low-dimensional spatial trees such

as quadtrees in 2-D and octrees in 3-D. A commonly used

tree in ML and data mining applications is kd-trees [15]

which are typically based on the same principles as quad-

and octrees but can handle high-dimensional data. This binary

tree structure maintains bounding boxes for all the nodes in

each level. Children are formed by recursively subdividing the

bounding box space based on some splitting criterion. The

partitioning stops when each child node contains no more than

q points (q > 0). The bounding box information allows us to

efficiently compute the center, minimum and maximum node-

to-point and node-to-node distances during evaluation without

accessing the actual points in each node, which is critical for

performance.

B. Classification of N-body Problems
We classify N -body problems into two main categories –

(a) approximation, and (b) pruning problems. Approximation

problems are those in which the contribution by a subset of the

data to the solution can be approximated by a smaller subset.

This group of problems only encompass arithmetic operators

and non-comparative kernels, such as Barnes-Hut and FMM.

985

For example, operators such as Σ or Π require the contribution

of all the points. In such approximation problems, as the name

suggests, there is a trade-off between performance and desired

accuracy. Portal exposes this trade-off to the user as a tuning

knob which can be customized based on the target application.

Pruning problems are those in which a part of the data and

its associated computation can be discarded. One example is

nearest neighbors whose inner operator is min which only

returns the minimum value. This provides opportunities to

prune parts of the subtrees where there is no likelihood of

finding the minimum value, without any loss of accuracy.

Such pruning opportunities are deduced based on the set of

operators and kernel function. Comparative operators such as

min or max result in a pruning problem and same is true for

comparative kernel functions such as (xr − xq < h).

C. Multi-tree Traversal
After building the space-partitioning tree, PASCAL uses a

multi-tree traversal in order to compute the N -body problem.

Algorithm 1 describes the multi-tree traversal given two inputs:

a set of nodes, Nall and a rule set, R. The rule set provides

three main functionalities described below and the correspond-

ing functions are highlighted in blue in Algorithm 1. Note that

the traversal is called recursively on the children at each level

of the tree as seen by the green function call in line 11.

Algorithm 1 MultiTreeTraversal

Require: Nodes set {N1,N2, ...,Nm} ≈ N all, rule set R.

1: if R.Prune/Approximate(N1, N2, ..., Nm) then
2: return R.ComputeApprox(N1, N2,..., Nm)

3: if (∀Ni ∈ N all is leaf) then
4: R.BaseCase(N1, N2,..., Nm)

5: else
6: for all Ni ∈ N all do
7: if Ni is leaf then N split

i = Ni

8: else N split
i = {Ni.right, Ni.left}

9: PowerSet-Tuples = {(N ′1, ...,N ′m)|N ′i ∈ N split
i }

10: for all (N ′′1 , ...,N ′′m) ∈ PowerSet-Tuples do
11: MultiTreeTraversal((N ′′1 , ...,N ′′m))

BaseCase implements the direct point-to-point computation

only for the leaf nodes of the tree. For instance, for the

nearest neighbors problem, this would be equivalent to finding

the corresponding point in the reference node which has the

minimum distance for every point in the query node.

Prune/Approximate checks if the computation for a set of

nodes can be approximated or pruned based on the N -body

problem definition, using a prune/approximate generator. If

so, the node and its descendants will not be visited. The

prune/approximate generator [10] first categorizes the N -body

problem based on the classification in Section II-B and then

generates its condition accordingly.

For approximating the contribution of a node, we check if

the minimum and maximum contribution of that node are very

close (i.e. less than a user-defined threshold). If so, we know

that all the data points in that node have a similar contribution

and therefore, ComputeApprox replaces the computation with

the center contribution of each node multiplied by the density

of that node which is equivalent to the number of data points

in that node. In Barnes-Hut, this would result in replacing the

influence of the points in the node with their center of mass.

In the case of pruning problems, PASCAL first builds a

pipeline of pruning opportunities (deduced from comparative

operators and kernel) which are then evaluated on the bound-

ary points of each hyper-rectangle node to decide whether to

prune that node or not. In some cases, the algorithm prunes

entire sub-trees, so the nodes and their descendants will not

be visited. Portal adapts the prune/approximate generator of

PASCAL to generate the prune condition based on the Portal

language specification.

Note that the N -body problems must satisfy two properties

to enable one to choose the tree-based optimal algorithm – (1)

operators satisfy the decomposability property over datasets.

Decomposability applies to an operator if the dataset is de-

composable across its subsets. For instance, the Σ operator

adheres to the decomposability property because the sum of

all interactions over the dataset can be decomposed into the

sum of smaller subsets of that data, and (2) the kernel function

should decrease monotonically with distance.

Portal leverages the above generalized algorithmic frame-

work of PASCAL, which abstracts the actual computation

from the traversal, and also abstracts the tree type which gives

us the freedom to plug and play with different trees.

III. PORTAL DSL

The design of the Portal DSL is inspired by the mathemati-

cal formulation in (2). It aims to describe N-body problems in

a well-structured high-level form that allows domain experts

to focus on the specification of the problem rather than

the algorithm or its associated implementation on a target

platform.

Recall that a N -body problem is defined using a set of

m operators applied to m datasets (D1...Dm) using a kernel

function, K, as seen in (2) - Section II. Each operator, dataset,

and/or kernel function can be associated with a layer. Problems

are built up by chaining multiple layers to specify a query.

Changing the operator, dataset, or the order of layers can

change the specification and meaning of the problem. Note

that the same dataset may be reused in multiple layers. We

explain the structure and semantics of the Portal language

using a well known N -body problem in machine learning,

nearest neighbor, which has the following form.

∀q argminr ||xq − xr|| (3)

Code 1 shows the Portal specification of nearest neighbors

problem1. PortalExpr in line 3 is the main object that holds

the problem definition. The first or outer-most layer applies

the ∀ (FORALL) operator over the query (q) dataset. The

second or inner-most layer applies the argmin (ARGMIN)

1Appendix VIII describes the grammar of the Portal language.

986

operator over the reference (r) dataset, as well as the Euclidean

distance kernel function, which calculates the distance between

two points. A layer is added to the PortalExpr using

the addLayer() method, which allows a user to build

the structure of the problem (lines 4-5). The execute()
function in line 6 generates and runs the tree-based N -body

algorithm and getOutput() in line 7 returns the result of

the computation in the format of a Storage object.

Portal code 1: Portal language specification of the nearest

neighbor problem using pre-defined Euclidean distance metric.

1 Storage query("query_file.csv");
2 Storage reference("reference_file.csv");
3 PortalExpr expr;
4 expr.addLayer(PortalOp::FORALL, query);
5 expr.addLayer(PortalOp::ARGMIN, reference,

PortalFunc::EUCLIDEAN);
6 expr.execute();
7 Storage output = expr.getOutput();

As seen from code 1, each layer can consist of three

components – (a) portal operator, (b) storage object, and (c)

kernel/modifying function. We explain each component in

detail in the following subsections.

A. Portal Operators
Portal operators are a set of distinct operators that filter

the results of their layer and pass it to the next outer layer

or the output. A list of these operators is defined in Table I.

Each layer requires an operator to specify what sort of filtering

happens on the data that layer computes on. We categorize op-

erators into 3 groups – (a) single variable reduction operators,

(b) multivariable reduction operators, and (c) all operator. This

categorization is helpful in deciding the type of intermediate

storage required for each layer. It allows Portal to allocate just

the right amount of storage to propagate to outer layers.

TABLE I: Mathematical operators supported in Portal along

with their categorization into Single, Multi, and All operators.

Category Mathematical Operator Portal Operator

All ∀ FORALL
Single

∑
SUM

Single
∏

PROD
Single argmin ARGMIN
Single argmax ARGMAX
Single min MIN
Single max MAX
Multi ∪ UNION
Multi ∪ arg UNIONARG
Multi argmink KARGMIN
Multi argmaxk KARGMAX
Multi mink KMIN
Multi maxk KMAX

Single variable reduction operators. These operators take

a set of values as input and reduce the set to a single output.

These operators are listed in the Single category in Table I.

For example, when the min operator is applied to a reference

dataset, it returns the minimum value which is a single output.

Multi variable reduction operators. These operators take

a set of values as input and reduce them to a smaller set of

values, typically with a specified length, k. These operators

include argmink , argmaxk, mink , maxk, ∪, and ∪ arg.

Each multivariable reduction operator requires us to specify

a number k, which limits the number of values that get

filtered, except ∪ and ∪ arg operators. In our nearest neighbor

example, using argmin is the same as using argmink when

k = 1. If one desires to compute the k closest reference

points to each query point, the Portal operator in the inner

addLayer() method in line 5 of code 1 has to be modified

to apply a multivariable reduction operator as shown below.

expr.addLayer((PortalOp::KARGMIN, k), reference,
PortalFunc::EUCLIDEAN);

All operator. The ∀ operator does not filter any values and

given an input, it returns all the data. In the nearest neighbor

example, the ∀ operator is applied to the outermost layer to

compute the nearest neighbors of all query points in the set q.

B. Storage
Each layer includes a Storage object, which corresponds to

a dataset. Storage objects are designed to be the primary user-

facing data structure. Storage objects can be created from C++

vectors (as shown below) or from CSV files (as shown in lines

1-2 of code 1).

// Construct Storage from C++ data-structure
std::vector<std::vector<float>> input;
// Fill in the input data structure with values
Storage query(input);

Portal determines the data layout of the Storage objects

based on the dimensionality of the dataset to further optimize

performance. Portal can choose between column- or row-major

data layout. When the dataset has a smaller dimensionality

(less than or equal to 4), Portal chooses a column-major

layout. Datasets with a larger dimensionality default to a row-

major layout. Portal makes this decision to enable efficient

compiler auto-vectorization which is discussed in more detail

in Section IV.

Portal generates a space-partitioning tree for each input

Storage object. The output Storage object will be returned

by calling the execute() function. Both input and output

storage objects are available while Portal deletes all the

intermediate storage objects after execute() function. The

programmer can delete input/output storage object using the

clear() function (not shown).

C. Kernel/Modifying Function
The last component constituting a layer is the kernel/-

modifying function. This function is required for the inner-

most layer and is commonly known as the kernel function in

literature [6]. Other layers can also specify functions, however,

we call them modifying functions. The kernel function specifies

the science of the problem which depends on the distance

987

between pairs of points in the chosen parameter space. Portal

implements a set of commonly used distance metrics (for ease

of use), which can be used to compose kernel functions.

Portal code 2: Examples of pre-defined distance metrics.

1 expr.addLayer(PortalOp::FORALL, reference,
PortalFunc::MANAHATTAN));

2 expr.addLayer(PortalOp::FORALL, reference,
PortalFunc::CHEBYSHEV));

3 expr.addLayer(PortalOp::FORALL, reference,
PortalFunc::MAHALANOBIS));

4 expr.addLayer(PortalOp::FORALL, reference,
PortalFunc::SQREUCDIST));

For instance, code 1 uses the pre-defined Euclidean distance

metric to specify the kernel function for nearest neighbors

which in this case is equal to the distance between points in

set q and r in the Euclidean space. Code 2 shows examples

of other pre-defined distance metrics such as Manhattan,

Chebyshev, Mahalanobis, and Square Euclidean distances.

Portal also allows the user to define custom kernel functions.

Code 3 shows how Euclidean distance, the same function used

in our nearest neighbor example, can be defined using the

Expr object in line 5. Expr can be specified using Var
objects as input variables. These Var’s can be used in a wide

variety of calculations using a specified set of operations that

can be compiled and optimized by Portal. The Var objects are

then linked to specific layers using the addLayer method as

shown in code 3.

Portal code 3: Portal specification for user-defined distance

metric and kernel function for nearest neighbors.

1 Storage query("query_file.csv");
2 Storage reference("reference_file.csv");
3 Var q;
4 Var r;
5 Expr EuclidDist = sqrt(pow((q-r), 2));
6 PortalExpr expr;
7 expr.addLayer(PortalOp::FORALL, q, query);
8 expr.addLayer(PortalOp::ARGMIN, r, reference,

EuclidDist);
9 expr.execute();

10 Storage output = expr.getOutput();

To allow for greater flexibility, users can also define their

own external C++ functions. For example, if the user wants

to use another library to specify a kernel function, the

addLayer method accepts C++ functions. Since Portal is

an embedded DSL, we can take advantages of these libraries

and infrastructures provided by the host language. Although

external C++ functions will not be optimized in the same

way the internally specified Portal kernel functions are, they

allow for greater flexibility on what problems Portal can solve.

Additional bindings to other languages, such as MATLAB or

Python, can be added in the future.

IV. PORTAL COMPILER

To synthesize optimal machine code from the high-level

Portal language, the Portal compiler proceeds through the

major stages as illustrated in Fig. 1. First, Portal builds space-

partitioning trees for the input datasets. The next step is to

synthesize code for the three key functions in the multi-tree

traversal (Algorithm 1). The Prune/Approximate and Com-
puteApprox functions in the tree traversal are generated using

a modified version of the prune generator in the PASCAL

algorithmic framework [10]. To use the prune generator in

Portal, we modify it to get the Portal operators and kernel

function as input and emit the Prune/Approximate and Com-
puteApprox functionality in Portal IR. This enables us to apply

optimizations and transformations to the former functions in

the compiler backend.

Portal core compiler lowers and synthesizes loops for the

BaseCase given a PortalExpr and automatically man-

ages the intra-layer storage injection. Then, it flattens multi-

dimensional store, load, and allocations. After flattening, we

perform numerical and strength reduction optimizations spe-

cific to N-body problems. Fig. 2 and 3 illustrate the IR for

the key functions in the tree-traversal (Algorithm 1) and walk

through the different stages of the compiler transformations

for two N -body problems, namely nearest neighbor and kernel

density estimation respectively. The reason for choosing these

two problems is to illustrate the IR and Portal stages for both

prune (nearest neighbor) and approximation (kernel density

estimation) examples from the two categories of N -body

problems.

Finally, backend code generation emits x86 machine code

using LLVM. The parallelization is applied in the tree traver-

sal which applies to all the N -body problems expressed in

Portal. Note that in addition to the asymptotically optimal tree

algorithm, Portal also generates the code for the brute-force

algorithm. This is currently used for correctness checks. In the

rest of this section, we describe each of these major compiler

steps in detail.

A. Lowering

The first step of our compiler is the lowering process that

synthesizes a set of nested loops given a PortalExpr object.

The order of the loops follows the same as the language

specification (e.g. outermost layer mapping to the outermost

loop) since the ordering defines the structure of the N -

body computation. Loops are defined by their minimum and

maximum values, and all loops implicitly stride by 1.

Next, Portal builds an argument list for each layer and

assigns the initial values for each operator and reduction

filter. For all inner layer operators, intermediate values of

operations are stored in the intermediate storage objects, which

are initially assigned with their default values. For example, for

the min operator, the initial value of the intermediate storage

is set to the highest value for that specific numeric type as its

default value (e.g. DBL_MAX for double precision data).

After that, the kernel/modifying functions are lowered into

Portal IR. Finally, Portal lowers the mathematical functionality

of each operator at the end of the corresponding synthesized

loop. For example, for the min operator, Portal generates a

988

Flattening Numerical
Optimization

Strength
Reduction

Code
Generation

Storage
Injection

LoweringPortal
Language

Space-partitioning TreesMulti-tree Traversals
 BaseCase

 Prune/Approx

 ApproxCompute

Prune Generator
 Prune Condition

 Approximate Condition

 Approximate Compute

Fig. 1: Portal block diagram. The core of the compiler lowers the N -body problem defined in the Portal language to imperative

code. Portal constructs a loop nest and injects storage for each layer of the loop according to their corresponding operators.

The backend code generator emits machine code via LLVM.

/* Storage injection for outer layer */
alloc storage0[q.size]
for q in query.start ... query.end
 /* Storage injection for inner layer */
 alloc storage1 = max_numeric_limit
 for r in reference.start ...reference.end
 alloc t = 0
 /* Lowering the kernel function */
 for d in 0 ... dim
 t += pow((load(q,d)-load(r,d)),2)
 t = sqrt(t)
 /* Lowering the min functionality */
 storage1 = storage1<t?storage1:t
 storage0[q] = storage1

Mathematical Equation

∀q argminr||xq − xr||
Input: Nearest Neighbor

Storage query("query_file.csv");
Storage reference("ref_file.csv");
Var q;
Var r;
Expr EuclDist = sqrt(pow((q-r),2));
PortalExpr expr;
expr.addLayer(PortalOp::FORALL,q,
query);
expr.addLayer(PortalOp::ARGMIN,r,
reference,EuclDist);
expr.execute();
Storage output = expr.getOutput();

/* Prune/Approximate condition for the two
tree nodes N1 (from query) and N2 (from
reference) */
for d in 0 ... dim
 t += pow((load(N1min,d)-load(N2min,d)),2)
t = sqrt(t)
return (t>current_max_distance)

/* Nearest Neighbor is a pruning problem,
hence there is no approximation */
return 0;

BaseCase

Prune/Approx

ComputeApprox

Sec C: Flattening

Sec C: Flattening

t += pow((load((q×q.stride)-
 (q.start×q.stride)+d)-
 load((r×r.stride)-
 (r.start×r.stride)+d)),2)

storage0[(q×q.stride)-
 (q.start×q.stride)] = storage1

Sec E: Strength Reduction
t = 1/(1/fast_inverse_sqrt(t))

Sec C: Flattening
t += pow((load((N1min×N1min.stride)-
 (N1min.start×N1min.stride)+d)-
 load((N2min×N2min.stride)-
 (N2min.start×N2min.stride)+d)),2)

Sec E: Strength Reduction
t = 1/(1/fast_inverse_sqrt(t))

Sec A, B: Lowering & Storage Injection

Fig. 2: The IR representation of the nearest neighbor problem illustrating the IR of the three main functions in the tree traversal

(BaseCase, Prune/Approximate, and ComputeApprox) along with the different transformation applied to it. The nearest neighbor

returns zero for ComputeApprox since it is a prune N -body problem. Note that there is no numerical optimization applied for

this problem since the nearest neighbor doesn’t use Mahalanobis distance. Portal uses metadata information from the tree, such

as min, max, and center of the nodes of the tree for computing the Prune/Approximate condition efficiently. Refer to [10] for

more details on the generation of the Prune/Approximate conditions. The blue colored rectangles (middle) show the IR after

lowering and storage injection (subsections IV-A and IV-B), while yellow and green colored rectangles (right) present the IR

after flattening and strength reduction respectively (subsections IV-C and IV-E).

comparison imperative code at the end of loop synthesis, to

update the minimum computation of that layer.

B. Storage Injection

Storage injection creates the output and all intermediate data

storage for each layer. The intermediate storage is necessary

to pass data between layers; each inner layer filters and passes

its results to the next outer layer as intermediate storage. As

Portal recursively moves across layers in order to synthesize

nested loops, it dedicates storage for each layer depending

on the layer’s operator and category listed in Table I. The

storage injected for single variable reduction operators is only

one unit of data, as the output of that layer is only a single

value, while the storage for multivariable reduction operators

is equal to the size of the multivariable defined by the operator

(such as k for KARGMIN). As a special case, the ∀ operator

injects a storage object equal to the size of that layer’s dataset.

This is because ∀ doesn’t serve to filter through the data, rather

to output all the calculations.

For example in the nearest neighbor problem, the inner

layer searches for the argmin on the reference dataset. Since

argmin is a single reduction operator, we inject one memory

location per output of this layer. The outer layer applies a ∀
operator on the query data, which results in a storage injection

as large as the query set.

989

/* Storage injection for outer layer */
alloc storage0[q.size]
for q in query.start ... query.end
 /* Storage injection for inner layer */
 alloc storage1 = 0
 for r in reference.start ... reference.end
 /* Lowering the kernel function */
 storage1 += 1/sqrt(2×M_PI×Det(cov))×
 exp(-0.5×Mahalanobis(q,r,cov))
 storage0[q] = storage1

Mathematical Equation

Input: Kernel Density Estimation

Storage query("query_file.csv");
Storage reference(“ref_file.csv");
Var q,r,cov;
Expr Kernel = 1/sqrt(2×M_PI×Det(cov))
 ×exp(-0.5×Mahalanobis(q,r,cov));
PortalExpr expr;
expr.addLayer(PortalOp::FORALL,q,
query);
expr.addLayer(PortalOp::SUM,r,
reference,Kernel);
expr.execute();
Storage output = expr.getOutput();

/* Prune/Approximate condition for the two
tree nodes with their min, max and center
as metadata */
 1/sqrt(2×M_PI×Det(covmax))×exp(-0.5×
 Mahalanobis(qmax,rmax,covmax))-
 1/sqrt(2×M_PI×Det(covmin))×exp(-0.5×
 Mahalanobis(qmin,rmin,covmin))
 <tau×1/sqrt(2×M_PI×Det(covcenter))×
 exp(-0.5×Mahalanobis(qcenter,rcenter,covcenter))

/* KDE is an approximation problem, hence
Portal approximates with the center of node
multiplied by its size */
return 1/sqrt(2×M_PI×Det(covcenter))×
exp(-0.5×Mahalanobis(qcenter,rcenter,covcenter))×
Nsize

BaseCase

Prune/Approx

ComputeApprox

Sec C: Flattening

Sec E: Strength Reduction
storage1 = fast_inverse_sqrt(2×M_PI
 ×Det(cov))×exp(-0.5×
 Forward_subs(q,r,Cholesky(cov)))

Sec D: Numerical Optimization
storage1 += 1/sqrt(2×M_PI×Det(cov))
 ×exp(-0.5×Forward_subs
 (q,r,Cholesky(cov)))

∀q
∑

r

Kσ(
||xq − xr||

σ
)

Sec E: Strength Reduction
fast_inverse_sqrt(2×M_PI×Det(covmax))...

Sec D: Numerical Optimization
...×exp(-0.5×Forward_subs(qmax,rmax,
 Cholesky(covmax)))

Sec E: Strength Reduction
fast_inverse_sqrt(2×M_PI×
 Det(covcenter))×...

Sec D: Numerical Optimization
...×exp(-0.5×Forward_subs(qcenter,rcenter,
 Cholesky(covcenter)))×...

Sec A, B: Lowering & Storage Injection

storage0[(q×q.stride)-
 (q.start×q.stride)] = storage1

Fig. 3: The IR representation of kernel density estimation (KDE) problem illustrating the IR of the three main functionalities

in the tree traversal (BaseCase, Prune/Approximate, and ComputeApprox) along with the different transformation applied to

it. The Kernel (K) in the mathematical equation is the Gaussian kernel. KDE also benefits from the numerical optimizations

for the Mahalanobis distance computation. Portal uses metadata information from the trees such as min, max, center, and size

of the node for computing Prune/Approximate condition and the associated approximation, ComputeApprox. This metadata is

denoted with the subscript notation. For example, the metadata qcenter is the center of a node q of the tree. The blue colored

rectangles (middle) show the IR after lowering and storage injection (subsections IV-A and IV-B), while yellow, purple, and

green colored rectangles (right) present the IR after flattening, numerical optimization, and strength reduction respectively

(subsections IV-C, IV-D, and IV-E).

C. Flattening
The Portal compiler flattens multi-dimensional loads and

stores into one-dimensional load and store operations. Simi-

larly, for nested loop arguments, Portal flattens the arguments

using the base offset and strides from each loop to compute a

one-dimensional version of its arguments.

D. Numerical Optimization
After flattening, Portal performs two optimization passes

that exploit domain (N-body) specific knowledge. The first

such pass is numerical optimization, which implements a fast

calculation between a point x and a distribution D, known as

Mahalanobis distance. It generalizes the measure of how many

standard deviations away x is from the mean of distribution D.

If we re-scaled each x to have unit variance, this distance then

would correspond to the standard Euclidean distance in the

transformed space. About 60% of basic statistical inference N -

body problems presented in [16] have a form of Mahalanobis

distance calculation. Therefore, optimizing this distance metric

can benefit a large subset of N-body problems.

Mahalanobis distance between two points, q and r is defined

as, (xq − μr)
TΣ−1(xq − μr) where μ and Σ are the mean

and covariance respectively. Naively evaluating this distance

requires computing the inverse of the covariance matrix which

is an expensive linear algebra operation that can take on the

order of m3 operations where m is the matrix dimension.

However, we can exploit the fact that the covariance matrix

of any real random vector is symmetric positive semi-definite.

That is, we rewrite the covariance matrix with a combi-

nation of Cholesky decomposition and forward substitution

which reduces the complexity to m2/2. First, we factorize the

covariance matrix using Cholesky decomposition to obtain a

lower triangular matrix as follows.

(xq − μr)
TΣ−1(xq − μr) = (xq − μr)

T (LLT)−1(xq − μr)

where L is a lower triangular matrix. If Y = xq − μr, we

can further re-write the right-hand side of the above equation

as,

Y T (LLT)−1Y = (L−1Y)TL−1Y.

Since L is a lower triangular matrix, we can use forward

substitution to compute X = L−1Y , in turn, reducing the

original exponent to XTX , a simple and cheap inner product.

Moreover, we can now compute the determinant of the covari-

ance matrix, |Σ| by simply multiplying the diagonal entries

of the lower triangular matrix, L which is another expensive

990

operation that arises in such computations.

E. Strength Reduction
Operations such as are power (pow), square-root (sqrt),

and reciprocal square-root (1/
√
x) that arise in many N -body

problems [16] have long latencies. The second optimization

pass is strength reduction which replaces such expensive

operations with faster, albeit less accurate versions. If the pow
operation has an exponent less than 4, Portal replaces this with

a chained multiplication. For computing 1/
√
x, we use the fast

inverse square root that is provided by LLVM, which can result

in up to 4× faster performance compared to the naive version

with an error of 0.17% [17]. For approximation problems

with inherent time/accuracy trade-off, this optimization pass

provides an additional tuning knob.

There are two potential ways of calculating
√
x – (a) to

multiply x with its fast inverse square root (x ∗ 1/√x =
√
x),

and (b) inverse of fast inverse square root (1/(1/
√
x) =

√
x).

The former is faster, however when x = 0 then the former

returns NaN while the latter returns 0 as desired.

F. Code Generation
Finally, we perform low-level optimizations and emit ma-

chine code for the defined N -body problem. Portal backend

uses LLVM for low-level code generation. We first perform

a set of standard passes, such as constant-folding and dead-

code elimination. The Portal IR is then lowered to LLVM

IR. For the most part, there is a one-to-one mapping between

Portal and LLVM IR. However, for some filters, we imple-

ment additional data-structures. For example in the case of

multivariable reduction filters such as mink, we implement

an ordered array of size k to keep a sorted list of the mini-

mum distances calculated so far. Keeping these values sorted

allows for efficient computation and fewer comparisons in

each iteration/update. After generating LLVM IR, the compiler

links external functions, including user-defined external kernel

functions. Before finishing the compilation, this function is

finally wrapped around another function that the user and our

methods can easily call upon.

The parallelization happens in the tree traversal using

OpenMP. In Portal, we exploit a combination of data and

task parallelism. Initially, we spawn OpenMP tasks recursively

until all the threads are saturated, at which point we switch

to data parallelism. The generated code is auto-vectorized by

the compiler. To enable efficient auto-vectorization, recall that

Portal chooses between column- and row-major data layout

based on the dimensionality of the dataset.

To make sense of this, we break down our nearest neighbor

example. The BaseCase computation between two leaf nodes

consists of three nested loops; the outermost loop iterates over

all the points in the query set, the middle loop iterates over all

the points in the reference set, and the innermost loop iterates

through all the elements within the two chosen query and

reference data points to calculate the distance. The loop extent

of the innermost loop is determined by the dimensionality of

the datasets.

For low dimensional data, the compiler can unroll the

innermost loop, thereby exposing vectorization opportunities

at the level of the middle loop. To exploit this, we store the

data in a column-major layout such that every row stores

values from the same dimension for different points. In other

words, each data point is stored as a column while in row-

major layout, each data point is stored as a row. When

using column-major layout, each cache line loads data from

different data points. Since the middle loop is the target of

vectorization for low dimensional data, this results in less

wait for memory loads and consequently better vectorization

performance. On the other hand, for high dimensional data, the

compiler does not unroll the innermost loop due to large loop

counts. Therefore, to exploit vectorization in the innermost

loop, we use a row-major data layout where every row stores

one data point.

V. EVALUATION AND DISCUSSION

In this section, we first evaluate the code generated by

Portal against hand-optimized PASCAL implementations of

6 N-body problems. We then demonstrate Portal’s ability to

generate optimal code on three additional N-body problems

not implemented in PASCAL. For the ML problems, we

compare their performance against widely used open-source

libraries and frameworks such as MLPACK [12] and scikit-

learn [11]. For Barnes-Hut computation, we compare against

hand-optimized C++ code from the FDPS framework [13]. All

evaluations are performed on the state-of-the-art AMD EPYC

7551 multicore processor with a total of 128 cores.

A. Experimental Setup
Architecture and Compiler. For our evaluation, we choose

a dual-socket AMD EPYC 7551 processor. Each socket has

64 cores, for a total of 128 cores and a theoretical double

precision peak performance of 2611.2 GFlops/s. We use clang

compiler version 6.0.0 and LLVM version 6.0.0. We use

Python v3.7.0 for scikit-learn v0.20.0 and MLPACK 3.0.3.

TABLE II: Description of the

datasets. N is the number of

points and d is the dimen-

sionality.

Dataset N d

Yahoo! 41904293 11

IHEPC 2075259 9

HIGGS 11000000 28

Census 2458285 68

KDD 4898431 42

Elliptical 10000000 3

Benchmarks. We

present results on six

real-world datasets

characterized in Table II.

These include Yahoo! front

page module user click

log dataset, v1.0 (Yahoo!),

Higgs boson’s signals and

background process dataset

(HIGGS), Individual

Household Electric Power

Consumption dataset

(IHEPC), US Census

data from 1990 (Census),

and KDD Cup 1999 dataset (KDD) from the UCI ML

repository [18]. The 3-dimensional dataset (Elliptical) is

generated for evaluating the Barnes-Hut algorithm where

particles are angularly uniformly (in spherical coordinates)

distributed on the surface of an ellipsoid with an aspect ratio

991

TABLE III: Summary of the characteristics of the nine N -body problems chosen for evaluation (EM consists of two N-body

sub-problems: E-step and log-likelihood). The kernel functions are evaluated on the border points given by N border
r and N border

q .

Ndiameter
r represents the span of the widest dimension in hyper-rectangle Nr. Metadata such as min, max, and center represent

the minimum, maximum, and center data point in a hyper-rectangle. τ , τ1, τ2, and σ represent threshold values defined based

on the N -body problem or controlled by the user. For the EM computation, μk,Σk are the parameters of Gaussian component,

k, with mean vector μk and covariance matrix Σk, while πk is the mixing weight. Other parameters such as Mq and Mr in

Barnes-Hut are defined based on the problem specification which in this case refer to the masses of the interacting objects. �

denotes iterative algorithms.

N -body Problems Operators Kernel Function Pruning/Approximation Condition

k-Nearest Neighbors ∀, argmin ||xq − xr|| Prune ⇔ ||xq − xr|| ≥ τ, ∀xr ∈ N border
r

Range Search ∀,⋃ arg I(hmin < ||xq − xr|| < hmax)
Prune ⇔ ||xq − xr|| > hmax or ||xq − xr|| < hmin,

∀xr ∈ N border
r

Hausdorff Distance max,min ||xq − xr||
Prune ⇔ τ1 ≥ (||xq − xr|| : τ2 ≤ ||xq − xr||),
∀xq ∈ N border

q , ∀xr ∈ N border
r

Kernel Density Estimation ∀,∑ K(||xq−xr||
σ) Approximate ⇔ Kmax −Kmin < σ ×Kcenter

Minimum Spanning Tree� ∀, argmin ||xq − xr|| Prune ⇔ ||xq − xr|| ≥ τ, ∀xr ∈ N border
r

E-step in EM� ∀, ∀ rnk = πkN (xn|μk,Σk)∑K
j=1 πjN (xn|μj ,Σj)

Approximate ⇔ (rmax
i − rmin

i) < σ × rcenteri ,

i = 1, ..,K

Log-likelihood in EM�
∑

, log
∑

πkN (xn|μk,Σk)

Approximate ⇔

log
K∑

i=1

πiN (xmax|θi)− log

K∑

i=1

πiN (xmin|θi)

< σ × |log(
K∑

i=1

πiN (xcenter|θi))|

2-Point Correlation
∑

,
∑

I(||xq − xr|| < h) Prune ⇔ ||xq − xr|| ≥ h, ∀xr ∈ N border
r

Naive Bayes Classifier ∀, argmin N (xn|μk,Σk) Prune ⇔ N (xn|μk,Σk) > τ, ∀xn ∈ N border
r

Barnes-Hut ∀,∑ f =
GMqMr

(||xq − xr||)2
Approximate ⇔
Ndiameter

r < τ × ||xq −N center
r ||

1:1:4. The elliptical dataset generates an adaptively refined

octree.

B. Comparison with PASCAL
Table III shows a summary of key characteristics of the

six N-body problems chosen for comparison namely, k-nearest

neighbors (kNN), range search (RS), kernel density estimation

(KDE), Hausdorff distance (HD), minimum spanning tree

(MST), and expectation maximization (EM). The choice of

these six is because they cover a variety of different N-body

problems including pruning vs approximation and direct vs

iterative problems. They also include problems from differ-

ent metric spaces (e.g. Euclidean vs Mahalanobis). PASCAL

achieves orders of magnitude higher performance compared

to widely used libraries and frameworks such as MLPACK,

scikit-learn, MATLAB, and Weka [10] for all six problems.

Therefore, we compare against PASCAL’s hand-optimized

implementations.

Table IV presents the running time on five datasets for

the code generated by Portal and hand-optimized PASCAL

implementations (called expert) for the six problems. Both

implementations use the same kd-tree data-structure (built

using median partitioning strategy by splitting along the widest

dimension) and the same multi-tree traversal template (Algo-

rithm 1). For both Portal and expert, we use the number of

cores that deliver the highest performance for each dataset

and problem combination. We also empirically tune the algo-

rithmic parameter, leaf size and level of tree parallelization

which control the size and number of tasks created. Since

we rely on the OpenMP work-stealing scheduler to balance

the work across all 256 threads (at the highest concurrency)

and 8 NUMA domains, it is critical to tune these parameters

to achieve scalability, especially at this scale on a multicore

system.

Across a range of problems and datasets, our Portal lan-

guage is able to express and our Portal compiler is able to gen-
erate implementations using optimal tree-based algorithms that

are within 5% (on average) of state-of-the-art performance.

We observe the largest deviation of 8−9% for EM because of

external function calls such as the calculation of covariance

that is required for evaluating the kernel function shown in

Table III.

In addition to running time, we also report the number of

lines of code (LOC) in the last three columns of Table IV.

Portal programs require significantly fewer LOC than hand-

992

TABLE IV: Comparison of the Portal running time (in seconds) against PASCAL for 6 N -body problems across 5 datasets.

Each dataset spans 3 columns that report their respective performance and % difference. The last 3 columns show LOC as an

indicator for user productivity. Note that for MST and EM in Portal only require 12 and 30 lines respectively for specifying

the N -body problem. The rest of the code implements the iterative logic which is written in native C++ code. The last column

(× shorter) shows the factor that Portal code is shorter than PASCAL.

Census Yahoo! IHEPC HIGGS KDD LOC

E
x

p
er

t

P
o

rt
al

%
D

if
f

E
x

p
er

t

P
o

rt
al

%
D

if
f

E
x

p
er

t

P
o

rt
al

%
D

if
f

E
x

p
er

t

P
o

rt
al

%
D

if
f

E
x

p
er

t

P
o

rt
al

%
D

if
f

E
x

p
er

t

P
o

rt
al

×
S

h
o

rt
er

k-NN 22.8 23.9 4 84.6 85.2 2 8.7 9.1 4 186.0 191.0 3 21.4 22.6 5 867 13 67

KDE 1087 1129 3 133.7 139.5 4 39.2 41.7 6 411.8 430.9 4 926.5 946 2 626 15 42

RS 42.2 44.4 5 214.5 223.1 4 15 16.1 7 122 130.1 6 20.1 21.1 4 673 13 52

MST 374.1 391.7 4 918.4 946.1 3 200.8 211 5 478.3 486.2 2 273.6 281 3 956 54 17

EM 76.3 82.6 8 224.5 242.8 8 78.6 85.3 8 198.8 216.7 9 32.4 35.3 8 1681 104 16

HD 40.9 43.1 5 122.8 129.7 5 38.4 40.1 4 236.6 243.8 3 36.2 38.3 5 689 13 53

written hand-optimized code. For example, the Portal version

of k-nearest neighbors is written in 13 lines of code and

achieves within 2 − 5% of expert performance. EM, a soft

clustering algorithm composed of two N-body sub-problems is

the longest Portal program written in 104 LOC, which consists

of 30 lines of Portal code and 74 lines of native C++ code

which is 16× fewer LOC compared to expert. Note that we

do not report the tree construction, tree traversal, and prune

generator LOC for expert since these modules can be reused

when implementing a new problem. In summary, these results

show the potential of Portal to express a wide range of N-

body problems while achieving competitive performance with

reduced programming effort.

C. Validation

We also validate Portal with three other N -body problems

namely, 2-point correlation, naive Bayes classifier and Barnes-

Hut that are not implemented in PASCAL. We refer the

reader to the last three rows of Table III for the operators

and the kernel functions defining these three problems. Since

no framework like Portal exists at this time for generalized

N-body problems (to the best of the author’s knowledge),

we compare against open-source ML libraries/packages and

optimized Barnes-Hut framework. We compare against scikit-

learn [11] for 2-point correlation and MLPACK [12] for naive

Bayes classifier. This is due to the fact that MLPACK does

not implement 2-point correlation but both MLPACK and

scikit-learn implement the naive Bayes classifier. However,

MLPACK delivers the best performance among the two, so

we only report MLPACK performance.

Scikit-learn is an open source project with more than

173,000 downloads, with 92 releases by 1265 contributors.

MLPACK is a C++ machine learning library with emphasis

on speed and ease of use with more than 137 contribu-

tors. Both scikit-learn and MLPACK implement a tree-based

algorithm. For Barnes-Hut, we compare against FDPS, a

high-performance framework specifically designed for parallel

particle simulations which provides a hand-optimized C++

implementation [13].

We choose kd-tree as the tree type for fair comparison

across all implementations, and octree for Barnes-Hut. Table V

shows that Portal achieves 66−165× better performance than

scikit-learn for 2-point correlation and is 15−47× faster than

MLPACK for naive Bayes classifier across different datasets.

Portal achieves 70% better performance compared to FDPS

for the Barnes-Hut computation on 10 million particles.

Portal is also comparable to ML libraries/packages written

in popular languages such as python in terms of LOC. For

instance, 2-point correlation is written in 12 lines of python

code in scikit-learn. Portal code, on the other hand, is written

in 13 lines of code providing similar productivity compared

to high-level languages.

In summary, these results validate the potential of our

approach resulting in performance that is orders of magnitude

faster than state-of-the-art libraries. Additional algorithms can

be expressed in this style with minimal programming effort re-

sulting in out-of-the-box parallel optimized implementations.

VI. RELATED WORK

Domain-specific languages and compilers. In the past

few years many domain-specific languages (DSLs) such as

DeepDSL [19] for deep learning, Diesel [20] for linear algebra

and neural nets, Saiph [21] for computational fluid dynamics,

Indigo [22] for image reconstruction, and Halide [23] for im-

age processing have demonstrated that DSLs not only produce

terse, extensible, and composable programs but also achieve

state-of-the-art performance across different hardware. This is

due to a representation where the choices for how to execute a

program are separated from the definition of what to compute.

This distinction shows in part the separation between the

computation from the problem specification, which gives the

compiler flexibility to do the computation in the most efficient

manner. Portal, a DSL for yet another uncharted domain of N-

body problems is inspired by the same philosophy.

993

TABLE V: Comparison of the Portal performance (in seconds) against state-of-the-art (S-O-A) libraries/packages. S-O-A for

2-point correlation (2-PC), naive Bayes classifier (NBC), and Barnes-Hut (BH) are scikit-learn [11], MLPACK [12], and

FDPS [13] respectively. Note that Barnes-Hut is limited to 3-dimensional data, hence there is a dash (-) for higher dimensional

datasets. The elliptical dataset is a 3-dimensional dataset specifically chosen for Barnes-Hut.

Census Yahoo! IHEPC HIGGS KDD Elliptical

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

S
-O

-A

P
o

rt
al

sp
ee

d
u

p

2-PC 3529 53 66 37043 250 148 4281 26 162 17823 151 117 5134 31 165 5412 94 57

NBC 1337 87 15 3629 198 18 1699 88 19 5231 261 20 981 47 21 1026 194 5

BH – – – – – – – – – – – – – – – 473 278 1.7

DSLs can be stand-alone or embedded. For instance, Op-

tiML [24], DeepDSL [19], and Saiph [21] are embedded in

host language, Scala, while SCOPE [25] is a stand-alone

DSL. Embedded DSLs inherit the language constructs of their

host language and add domain specific primitives that allow

programmers to express their problem at a higher level of

abstraction. It also enables ease-of-adoption which are the

reasons for our choice of an embedded DSL.

N-body algorithms. N -body algorithms in physics are some

of the most well-studied parallel computing problems. The

most popular and widely used fast algorithms for classical N -

body problems are Barnes Hut [14] and FMM [7]. They use

trees to approximate distance computations and achieve sub

O(N2) asymptotic time.

While parallel N-body algorithms in physics have received

significant attention, the same is not true for other domains

such as machine learning (ML). There are a number of ML

libraries freely available, unfortunately, each of them lacks in

one or both of the two ways, (a) efficient optimal algorithms

and (b) parallelism and scalability on modern machines. For

instance, MLPACK [12] which is a state-of-the-art C++ ML

library offers fast algorithms but is not parallel or distributed

making it infeasible to scale to large datasets. Other popular

libraries emphasize ease of use but scale poorly such as

Weka toolkit [26] and SHOGUN toolbox [27]. Even others

implement fast algorithms but in languages such as Python

resulting in poor performance such as scikit learn [11] and

mlpy [28].

To our knowledge, none of the above libraries or currently

available frameworks implement parallel ML algorithms. The

main exception is OptiML [24], which is a DSL for par-

allel ML written in Scala which generates CUDA code for

heterogeneous platforms. First, we are not parallelizing the

brute-force algorithms for these computations, but instead,

are parallelizing fast tree-based algorithms. Second, we are

targeting the specific domain of N -body problems, not entire

ML which allows us to aggressively apply domain-specific

optimizations which are critical to bridging the performance

gap between hand-tuned and traditional compiler generated

code. As a result, our approach attempts to fill this huge void

in the domain of N -body problems and also combines all the

advantages described above that are inherent to DSLs.

PASCAL N -body algorithmic framework. PASCAL [10] is

a parallel tree-based algorithmic framework which includes a

library of hand-tuned and hand-optimized N -body problems.

In PASCAL, the user writes the code for the functions in

the tree-traversal (Algorithm 1) for new problems in addition

to implementing domain-specific optimizations. In contrast,

Portal is a DSL embedded in C++. Portal generalizes PASCAL

since it generates the code for these functions from a high-level

representation (Portal language) and the backend applies N -

body specific optimizations and transformations to generate

x86 code.

PASCAL has been compared with four state-of-the-art soft-

ware/libraries (written in different languages such as C++,

Java, and Python) including MLPACK, Matlab, Weka, and

Scikit-learn [10]. PASCAL shows significantly better per-

formance in comparison to all of these libraries/software.

PASCAL performance comes from a combination of algorith-

mic, numerical, and domain-specific optimizations as well as

parallelization. Since the former represents the current state-

of-the-art for these class of problems, we choose it as the

expert baseline for comparison with Portal. Portal inherits

the algorithmic abstractions from PASCAL and automates the

optimizations and transformations for the entire class of N -

body problems.

VII. CONCLUSIONS AND FUTURE WORK

Portal is a high-performance domain-specific language and

compiler for generalized N -body problems. We show how a

DSL with an appropriately high-level mathematical formu-

lation leads directly to both asymptotically fast algorithms

and their efficient parallel implementations on x86 platforms.

Moreover, Portal enables terse expression of the problem,

thereby reducing the lines of code written by experts up to

67× while obtaining performance comparable to expert tuned

code. The Portal DSL and intermediate representation are

independent of the underlying architecture which makes it

easily extensible to different platforms. In future work, we

intend to add support for additional backends including GPUs.

We foresee Portal to enable scientific discovery not only for

N-body problems in scientific computing and machine learning

but in a number of other domains such as computer graphics,

computational geometry, and applied mathematics that can

994

be expressed in Portal to obtain an out-of-the-box optimized

parallel implementation.

VIII. APPENDIX

Portal grammar is presented in code snippet 4. The

<name> in the grammar is the same as variable names in the

C++ language. The <call> function in the grammar is for pre-

defined functions in Portal such as Mahalanobis, Cholesky, etc.

as well as user-defined function calls (similar to C++ function

calls). Note ? represents an optional operator, meaning that the

symbol on its left can appear zero or one time. Similarly, the

symbol on the left of * could repeat zero or more times, and

the symbol on the left of + could repeat one or more times.

Portal code 4: Grammar specification for Portal.

<PortalProgram> → <StorageDef>+ <VarDef>*
<PortalExprDef>

<StorageDef> →
"Storage" <name>"("<file_name>")" |
"Storage" <name>"("<std_vector>")"

<VarDef> → "Var" <name>
<PortalExprDef> → <ExprDef> <AddLayer>+

<Execute>
<ExprDef> → "PortalExpr" <name>
<AddLayer> → <name>".addlayer("<OP>","<name>","

<name>","<Kernel>?")"
<Kernel> → sqrt(Kernel) | pow(Kernel) |

<expression> | <call>(a*) |...
<Execute> → <name>".execute()"
<OP> → "FORALL" | "SUM" | "PROD" | "ARGMIN" |

"ARGMAX" | "MIN" | "MAX" | "UNION" |
"UNIONARG" | "KARGMIN" | "KARGMAX" |
"KMIN" | "KMAX"

IX. ACKNOWLEDGMENTS

This work was supported by the U.S. National Science

Foundation under award number 1533917. We would like to

thank UCI HPC computing facility for providing access to the

AMD EPYC processor and their technical staff for assistance.

REFERENCES

[1] K. Scott, “On Proebsting’s law,” Technical Report CS-2001-12, Depart-
ment of Computer Science, University of Virginia, Tech. Rep., 2001.

[2] C. Ozgur, T. Colliau, G. Rogers, Z. Hughes, B. Myer-Tyson et al.,
“Matlab vs. python vs. r,” Journal of Data Science, vol. 15, no. 3, pp.
355–372, 2017.

[3] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,
R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros,
“A massively parallel adaptive Fast Multipole Method on heterogeneous
architectures,” Communications of the ACM (CACM), vol. 55, no. 5, pp.
101–109, May 2012.

[4] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros,
and R. Vuduc, “Optimizing and tuning the Fast Multipole Method for
state-of-the-art multicore architectures,” in Proc. IEEE Int’l. Parallel and
Distributed Processing Symp. (IPDPS), Atlanta, GA, USA, April 2010.

[5] A. Chandramowlishwaran, K. Madduri, and R. Vuduc, “Diagnosis,
tuning, and redesign for multicore performance: A case study of the Fast
Multipole Method,” in Proc. ACM/IEEE Conf. Supercomputing (SC),
New Orleans, LA, USA, November 2010.

[6] A. Gray and A. W. Moore, “N-body problems in statistical learning,” in
In Advances in NIPS. MIT Press, 2000.

[7] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
Journal of Computational Physics, vol. 73, pp. 325–348, 1987.

[8] J. K. Salmon and M. S. Warren, “Fast parallel tree codes for gravitational
and fluid dynamical N-body problems,” International Journal of High
Performance Computing Applications, vol. 8, no. 2, pp. 129–142, 1994.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from Berkeley,” EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2006-183, December 2006.

[10] L. A. Beni and A. Chandramowlishwaran, “PASCAL: A Parallel Al-
gorithmic SCALable Framework for N-body Problems,” in European
Conference on Parallel Processing. Springer, 2017, pp. 482–496.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[12] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A.
Mehta, and A. G. Gray, “MLPACK: A scalable C++ machine learning
library,” Journal of Machine Learning Research, vol. 14, pp. 801–805,
2013.

[13] M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, and
J. Makino, “Implementation and performance of FDPS: a framework
for developing parallel particle simulation codes,” Publications of the
Astronomical Society of Japan, vol. 68, no. 4, 2016.

[14] J. Barnes and P. Hut, “A hierarchical O(n logn) force-calculation
algorithm,” Nature, vol. 324, no. 446-449, December 1986.

[15] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Comm. ACM (CACM), vol. 18, no. 9, pp. 509–517, Septem-
ber 1975.

[16] A. G. Gray, “Bringing tractability to generalized N-body problems in
statistical and scientific computation,” Ph.D. dissertation, PhD thesis,
Carnegie Mellon University, 2003.

[17] C. Lomont, “Fast inverse square root,” Technical Report, vol. 32, 2003.
[18] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[19] T. Zhao and X. Huang, “Design and implementation of DeepDSL: A

DSL for deep learning,” Computer Languages, Systems & Structures,
vol. 54, pp. 39–70, 2018.

[20] V. Elango, N. Rubin, M. Ravishankar, H. Sandanagobalane, and
V. Grover, “Diesel: DSL for linear algebra and neural net computations
on GPUs,” in Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages. ACM,
2018, pp. 42–51.

[21] S. Macià, S. Mateo, P. J. Martı́nez-Ferrer, V. Beltran, D. Mira, and
E. Ayguadé, “Saiph: Towards a DSL for High-Performance Compu-
tational Fluid Dynamics,” in Proceedings of the Real World Domain
Specific Languages Workshop 2018. ACM, 2018, p. 6.

[22] M. Driscoll, B. Brock, F. Ong, J. Tamir, H.-Y. Liu, M. Lustig, A. Fox,
and K. Yelick, “Indigo: A Domain-Specific Language for Fast, Portable
Image Reconstruction,” in 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2018, pp. 495–504.

[23] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Seattle, Washington,
USA: ACM, 2013, pp. 519–530.

[24] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun, “OptiML: an implicitly parallel domain-
specific language for machine learning,” in Proceedings of the 28th
International Conference on Machine Learning (ICML-11), 2011, pp.
609–616.

[25] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “SCOPE: easy and efficient parallel processing of massive
data sets,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp.
1265–1276, 2008.

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: An update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, November 2009.

[27] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien,
F. d. Bona, A. Binder, C. Gehl, and V. Franc, “The SHOGUN machine
learning toolbox,” The Journal of Machine Learning Research, vol. 11,
pp. 1799–1802, 2010.

[28] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, and
C. Furlanello, “mlpy: Machine learning python,” 2012.

995

