
What-If Analysis of Page Load Time in 
Web Browsers 

Using Causal Profiling

Behnam Pourghassemi, Ardalan Amiri Sani, Aparna Chandramowlishwaran

University of California, Irvine

June 27, 2019 – SIGMETRICS’19



Outline
❏ Motivation
❏ Background

❏ Browser architecture
❏ Inter-dependency and critical path analysis
❏ Chrome browser
❏ Related work

❏ Methodology
❏ Causal profiling
❏ COZ+

❏ Experiments
❏ Experiment setup
❏ What-if analysis: Impact of computation stages on PLT
❏ What-if analysis: Impact of PLT-variant factors on PLT

❏ Conclusion

2



Web browsers

● Web browsers are one of the most frequently used applications for desktop and 
smartphones.

3



Browser performance

● Browser’s usability and market share

● Webpage’s business revenue

○ AliExpress reports 10.5% increase in orders 
by 36% reduction in the page load [1].

○ 53% of mobile site visitors leave a page 
that takes longer than 3 seconds to load [2].

4[2] https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks

[1] https://edge.akamai.com/ec/us/highlights/keynote-speakers.jsp\#edge2016futureofcommercemodal

● Web-app developers

Pixler.com



Challenges in improving performance

5

● Page load time (PLT): time from start of a user-initiated request to when the page 
content is loaded.

● Page load time potential bottlenecks
○ Network activities
○ Computation activities

● Challenges
○ Parallel and complex architecture of state-of-the-art browsers
○ Inter-dependency between activities and dynamic behavior of the page loading critical path

1995 2001 2005 2018



Research questions

1. What are the critical computation activities in the page loading process?

2. How much performance improvement would we realistically achieve by 
reducing these bottlenecks?

6



Outline
❏ Motivation
❏ Background

❏ Browser architecture
❏ Inter-dependency and critical path analysis
❏ Chrome browser
❏ Related work

❏ Methodology
❏ Causal profiling
❏ COZ+

❏ Experiments
❏ Experiment setup
❏ What-if analysis: Impact of computation stages on PLT
❏ What-if analysis: Impact of PLT-variant factors on PLT

❏ Conclusion

7



Browser Architecture

8

Scripting

Resource 
loader

HTML 
parsing Styling Layout Paint Compositing

Mouse
Keyboard
Plugin
Timer
...

Image
CSS 
file
JS file
...

Web server

http



Flow

Loading an object → Parsing the tag that references the object

Evaluating an object → Loading the object

Rendering the DOM tree → Updating the DOM

Loading an object referenced by a JavaScript or CSS → Evaluating the JavaScript or CSS

Downloading/Evaluating an object → Listener triggers or timers

Output

Parsing the next tag → Completion of a previous JavaScript download and evaluation

JavaScript evaluation → Completion of a previous CSS evaluation

Parsing the next tag → Completion of a previous CSS download and evaluation

Lazy/Eager 
bindings

[Lazy]Loading an image appeared in a CSS → Parsing the tag decorated by the image

[Lazy]Loading an image appeared in a CSS → Evaluation of any CSS that appears in front of the tag decorated by the image

[Eager]Preloading embedded objects does not depend on the status of HTML parsing

Resource 
constraint

Number of objects fetched from different servers → Number of TCP connections allowed per domain

Browsers may execute computational activities on the same thread, making dependencies b.w activities. This dependency is determined by the scheduling policy.

Inter-dependency and critical path analysis

9
Table source: Demystifying Page Load Performance with WProf [NSDI’13]



Inter-dependency and critical path analysis

10

1 <html>
2 <body>
3 <p id="first_par"> old content </p>
4 <link rel="stylesheet" href="b.css"></link>
5 <script src="c.js"></script>

...
7 </body>
8 </html>

download 
a.html

a.html

parse 
a.htmlHTML

CSS

JavaScript

time

download 
b.css

evaluate 
b.css

block

evaluate 
c.js

parse 
a.html

● Example:
○ <script> → block HTML parsing and execute JS

○ JS evaluation → evaluation of prior CSS 

download 
c.js

1 #first_par{
2 font-family:courier;
3 text-align:center;

...
5 }

1 document.getElementById("first_par").innerHTML = "new content";
2 document.getElementById("first_par").style.color = "blue";

...

b.css

c.js

● Inter-dependency between activities generates the critical path for the page loading.



Inter-dependency and critical path analysis

11

1 <html>
2 <body>
3 <p id="first_par"> old content </p>
4 <link rel="stylesheet" href="b.css"></link>
5 <script src="c.js"></script>

...
7 </body>
8 </html>

download 
a.html

a.html

parse 
a.htmlHTML

CSS

JavaScript

time

download 
b.css

eval
b.css

block

evaluate 
c.js

parse 
a.html

● Example:
○ <script> → block HTML parsing and execute JS

○ JS evaluation → evaluation of prior CSS 

download 
c.js

1 #first_par{
2 font-family:courier;
3 text-align:center;

...
5 }

1 document.getElementById("first_par").innerHTML = "new content";
2 document.getElementById("first_par").style.color = "blue";

...

b.css

c.js

● Inter-dependency between activities generates the critical path for the page loading.



Chrome web browser

● Parallel and complex architecture of current browsers → difficult critical path analysis!

Page load timeline for www.apple.com using chrome profilerExample webpage: www.apple.com

http://www.apple.com/
http://www.apple.com/


Related work
● Profiling and performance analysis tools

○ Dedicated browser profilers (e.g. Chrome DevTool)
○ General purpose profilers (e.g. gprof)

● Shortcoming
○ Do not provide quantitative and accurate what-if analysis

● Critical path analysis
○ webProphet [NSDI 2010]→ Dependency extraction through network perturbation.
○ Wprof [NSDI 2013]→ Dependency extraction based on predefined set of dependency policies 

and resource constraints.
○ Wprof-m [WWW 2016] and tempo [HotMobile 2011] → mobile browsers

● Shortcomings
○ Incomplete dependency extraction
○ Require exhaustive graph processing
○ Static analysis of the critical path

13



Outline
❏ Motivation
❏ Background

❏ Browser architecture
❏ Inter-dependency and critical path analysis
❏ Chrome browser
❏ Related work

❏ Methodology
❏ Causal profiling
❏ COZ+

❏ Experiments
❏ Experiment setup
❏ What-if analysis: Impact of computation stages on PLT
❏ What-if analysis: Impact of PLT-variant factors on PLT

❏ Conclusion

14



Methodology

● Use causal profiling [SOSP 2015] to detect performance bottlenecks and what-if analysis of 
main browser activities.

● Causal profiler can determine impact of optimization in a line of code on the total execution 
time.

● Causal profiler does not require explicit dependency graph generation and subsequent graph 
processing.

● Dependencies and impact of optimization are captured in runtime, hence, it considers dynamic 
behavior of the program.

15



Causal profiling

● Key idea: virtually speedup a selected code segment during the runtime.

● Virtual speedup

○ Run concurrent execution paths slower
whenever the selected function is running.

16

A B

C A

Thread 1

Thread 2

time

1) No speedup

A B

C A

Thread 1

Thread 2

time

speedup

original 
time

2) Actual speedup

A B

C A

Thread 1

Thread 2
time

speedup

all inserted 
delays

original 
time +

3) Virtual speedup



COZ

● COZ: Implementation of causal profiler.

● Overview

18

read 
debugging 
symbols

run the 
program

create hash table
IP --> source line

Application
(dwarf)

start 
thread 

execution

create 
sampler

turn on 
sampler

Linux Perf 
Events

save samples

enough 
samples for 
process?

insert delays

process 
samples

turn off 
sampler

Yes

No

pthread_create()

pthread_exit()

wrapper (per thread)

sampler 
interrupt

final 
processing 

and reporting

exit



COZ limitations and COZ+

● Limitations:
○ Mainly tested on Parsec benchmarks (less than 5K LOC)
○ COZ crashes on large applications like Google Chrome (11 millions LOC!)
○ Design and implementation issues

● Develop COZ+ on top of COZ
○ Fix implementation issues and redesign several modules
○ Make it scalable → low profiling overhead on large software systems
○ Optimize and customize for what-if analysis of Chromium browser 
○ It is open-source! https://gitlab.com/coz-plus/coz-plus

19

https://gitlab.com/coz-plus/coz-plus


COZ+

● Optimizing symbol loading

○ Chromium:
11 million C/C++ lines, 270K source files!

○ Take hours to read and 
process debugging symbols

20

read 
debugging 
symbols

run the 
program

create hash table
IP --> source line

Application
(dwarf)

start 
thread 

execution

create 
sampler

turn on 
sampler

Linux Perf 
Events

save samples

enough 
samples for 
process?

insert delays

process 
samples

final 
processing 

and reporting
turn off 
sampler

exit

Yes

No

pthread_create() wrapper (per thread)

sampler 
interrupt

Prune 
compilation 

units

create hash table
IP --> stage

mark stages' 
top activities

mark all call sites 
of top activities

chrome 
trace 

events

chrome 
source 
code

pthread_exit()

○ New hash table is lighter
○ Take less than 1 minute to create a table!

● Flexible sampling

○ Frequency ↑ → Accuracy ↑ overhead ↑
○ batch size ↑ → Accuracy ↓ overhead ↓

enough 
samples for 
process?

○ Freq = 500Hz (2ms period)
○ batch size = 8 (PLT < 4s) and 10 (PLT > 4s)



COZ+

● Metrics and reporting

○ COZ+ support multiple metrics for PLT

22

read 
debugging 
symbols

run the 
program

Application
(dwarf)

start 
thread 

execution

create 
sampler

turn on 
sampler

Linux Perf 
Events

save samples

enough 
samples for 
process?

insert delays

process 
samples

final 
processing 

and reporting
turn off 
sampler

exit

Yes

No

pthread_create() wrapper (per thread)

sampler 
interrupt

Prune 
compilation 

units

create hash table
IP --> stage

mark stages' 
top activities

mark all call sites 
of top activities

chrome 
trace 

events

chrome 
source 
code

pthread_exit()

○ Example of start events:
■ navigationStart (enter URL)
■ onBeforeRequest (HTTP request is sent)
■ onHeadersReceived (the first byte is received)

chrome
stop event
received?

chrome
start event
received?

○ Example of stop events:
■ DOMContentLoad (Dom is constructed)
■ loadFinish (Dom is loaded)
■ FP (first paint)
■ FMP (first meaningful paint)

final 
processing 

and reporting



COZ+

● Multi-process profiling

○ COZ profiler thread only sticks to 
application’s initial process

○ Challenge: debugging symbol table 
depends on the address space of the 
process

○ Solution: build debugging symbol table 
per child process → inefficient

○ Better solution: only debugging symbol 
table is sent to child process and add 
offset

○ COZ+ can profile child processes 
efficiently

23

read 
debugging 
symbols

run the 
program

Application
(dwarf)

start 
thread 

execution

create 
sampler

turn on 
sampler

Linux Perf 
Events

save samples

enough 
samples for 
process?

insert delays

process 
samples

turn off 
sampler

exit

Yes

No

pthread_create() wrapper (per thread)

sampler 
interrupt

Prune 
compilation 

units

create hash table
IP --> stage

mark stages' 
top activities

mark all call sites 
of top activities

chrome 
trace 

events

chrome 
source 
code

pthread_exit()

chrome
stop event
received?

chrome
start event
received?

final 
processing 

and reporting



Outline
❏ Motivation
❏ Background

❏ Browser architecture
❏ Inter-dependency and critical path analysis
❏ Chrome browser
❏ Related work

❏ Methodology
❏ Causal profiling
❏ COZ+

❏ Experiments
❏ Experiment setup
❏ What-if analysis: Impact of computation stages on PLT
❏ What-if analysis: Impact of PLT-variant factors on PLT

❏ Conclusion

25



Experiment Setup
● System

○ MacBook Air (core i7, 4MB cache, 4GB RAM)
○ Zelda (Intel Xeon, 40MB cache, 64 GB RAM)

● Test suite
○ Top 100 webpages from Alexa 
○ 10 runs for each configuration

● Network
○ 100Mbps Ethernet and 64Mbps WIFI
○ No local proxy
○ Use Linux Traffic Control (tc) to throttle network

26



Impact of computation stages on PLT
The picture can't be displayed.

LayoutScripting HTML

StylingPainting
27



Impact of computation stages on PLT
● Finding 1:

○ Mostly, a linear improvement in PLT → not 
enough concurrency between stages

● Finding 2:

○ Divergent patterns for webpages in different 
stages

28

Layout

Scripting

wikipedia.com ebay.com



Impact of computation stages on PLT
● Finding 3:

○ JavaScript is the most influential 
stage compared to the other stages.

○ HTML parsing and Painting have 
insignificant impact on PLT.

29



Impact of PLT-variant factors

● How PLT-variant factors affect what-if analysis of computation stages?

● We examine effect of the following factors:

○ System hardware

○ Network

○ Browser caching

32



System hardware
● Finding 4:

○ Stage optimization payoff is fairly 
unrelated to the system hardware.

Top figure: what-if analysis on first system (MacBook air core i7).
Bottom Figure: what-if analysis on second system (Zelda Intel Xeon)

33



Network

● Finding 7:

○ Increasing network bandwidth and 
decreasing network delay increases the 
potential impact of computation stages 
on PLT.

○ Network bandwidth and delay does not 
change the pattern of what-if plots and 
the order of the stages in terms 
of effectiveness.

● Finding 8:

○ Increasing the network bandwidth has a 
trivial effect on what-if graph of stages in 
average and high-speed connections 
(i.e. above 8Mbps)

34



Browser caching
● Finding 11:

○ Browser caching doesn't affect stage's 
influence under high speed connection 
(e.g. 100Mbps)

○ PLT improvement doubles by enabling 
caching at 1Mbps network connection.

35Figure: Impact of caching on what-if graphs under 1 Mbps connection



Outline
❏ Motivation
❏ Background

❏ Browser architecture
❏ Inter-dependency and critical path analysis
❏ Chrome browser
❏ Related work

❏ Methodology
❏ Causal profiling
❏ COZ+

❏ Experiments
❏ Experiment setup
❏ What-if analysis: Impact of computation stages on PLT
❏ What-if analysis: Impact of PLT-variant factors on PLT

❏ Conclusion

36



Conclusion

● Investigate and prioritize the bottleneck activities in modern web browsers by using an adaptive 
approach (causal profiling).

● Develop COZ+, an overhaul of the COZ profiler, by adding multiple optimizations and redesigning 
several modules to make causal profiling practically feasible to large applications.

● Perform comprehensive and quantitative what-if analysis using COZ+ on the major browser stages.

● Examine impact of important PLT-variants on what-if analysis of computation stages.

37



Thanks for your attention!

40


