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Web browsers have become one of the most commonly used applications for desktop and mobile users.

Despite recent advances in network speeds and several techniques to speed up web page loading such as

speculative loading, smart caching, and multi-threading, browsers still suffer from relatively long page load

time (PLT). As web applications are receiving widespread attention owing to their cross-platform support and

comparatively straightforward development process, they need to have higher performance to compete with

native applications. Recent studies have investigated the bottleneck of the modern web browser’s performance

and conclude that network connection is not the browser’s bottleneck anymore. Even though there is still no

consensus on this claim, no subsequent analysis has been conducted to inspect which parts of the browser’s

computation contribute to the performance overhead.

In this paper, we apply comprehensive and quantitative what-if analysis on the web browser’s page loading

process. Unlike conventional profiling methods, we apply causal profiling to precisely determine the impact of

each computation stage such as HTML parsing and Layout on PLT. For this purpose, we develop COZ+, a

high-performance causal profiler capable of analyzing large software systems such as the Chromium browser.

COZ+ highlights the most influential spots for further optimization, which can be leveraged by browser

developers and/or website designers. For instance, COZ+ shows that optimizing JavaScript by 40% is expected

to improve the Chromium desktop browser’s page loading performance by more than 8.5% under typical

network conditions.
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1 INTRODUCTION
Early web browsers only rendered static web pages with hyperlink documents but today’s browsers

are capable of loading web pages with animations, multimedia content, and JavaScript for user

interactions. Moreover, trends in client-side web-applications since the introduction of HTML5 and

Authors’ addresses: Behnam Pourghassemi, University of California, Irvine, Irvine, CA, USA, bpourgha@uci.edu; Ardalan

Amiri Sani, University of California, Irvine, Irvine, CA, USA, ardalan@uci.edu; Aparna Chandramowlishwaran, University

of California, Irvine, Irvine, CA, USA, amowli@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2019/6-ART27 $15.00

https://doi.org/10.1145/3326142

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 27. Publication date: June 2019.

https://doi.org/10.1145/3326142
https://doi.org/10.1145/3326142


27:2 Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna Chandramowlishwaran

Asynchronous JavaScript and XML (AJAX) have transformed web browsers into a critical platform

for the end-user software stack.

Performance of the web browser is critical to its usability. An important metric for measuring

performance is the Page Load Time (PLT). PLT is the time from the start of a user-initiated page

request to the time the entire page content is loaded. PLT directly impacts user experience and even

business revenue. Users may abandon a web page if it takes a long time to load or may even stop

using a particular browser or website if it does not satisfy their desired performance. According to

Google, 53% of mobile site visitors leave a page that takes longer than three seconds to load
1
. In

2016, AliExpress claimed that they reduced load time for their pages by 36% and recorded a 10.5%

increase in orders
2
.

There are two factors that contribute to PLT – (1) The time spent in network activities such as

establishing a TCP connection or performing a DNS lookup. (2) The time spent in computation
activities such as HTML parsing, applying CSS rules, etc.

Although there is a significant body of work on analyzing the source of performance bottlenecks

in browsers, there is no consensus among them. On the one hand, researchers conclude that network

activities are the primary source of performance overhead and several studies have investigated

the effect of resource loading on the browser’s PLT [3, 28, 42, 43]. Accordingly, various network

infrastructure reconfiguration and client-side solutions have been proposed to diminish this source

of overhead. Mitigating round-trip delay time, upgrading protocols along with the redesign of the

browser’s resource loading via prefetching, speculative loading, and smart caching are some of

these techniques [13, 39, 43, 45].

On the other hand, more recent studies have implied that CPU-intensive phases such as HTML

parsing and DOM manipulation have a more significant contribution to the PLT [32, 34, 37, 40, 45].

Correspondingly, researchers have attempted to improve the performance of different stages in the

page rendering pipeline [36, 41, 47]. Browser developers also parallelize compute-intensive stages of

the browser and fine-tune concurrency to mitigate page loading slow-down [27, 29, 32, 34, 35, 44].

In addition, browsers are getting more and more sophisticated in terms of both internal structure

and code organization. Current browsers execute different computation and network activities on

various threads and in some cases on multiple processes concurrently [12, 25, 31]. Inter-dependency

between these activities establishes a critical path in the rendering process, which is highly complex

to analyze [2, 26, 40, 46]. This raises two questions – (1)What are the critical activities in the page
loading process? (2) How much performance improvement would we realistically achieve by reducing
these bottlenecks?

In this paper, we employ what-if analysis on the page loading critical path to answer the above

questions. Unfortunately, there is a paucity of literature on what-if analysis of computational

activities on page loading process [37, 40, 42]. Furthermore, prior work is rooted in dependency

extraction of the activities and static analysis of the dependency graph, which have restricted func-

tionality since (1) these measurements are incapable of capturing all the existing inter-dependency

between activities and (2) they do not take into account the dynamic behavior of the browser such

as task scheduling and parser threading, and the dynamic behavior of content such as dynamically-

generated object references in JavaScript [26, 38].

In order to analyze the browser performance, demystify the performance bottlenecks and eval-

uate their influence on PLT, we apply extensive and quantitative what-if analysis on the page

loading process. Contrary to prior efforts, we use causal profiling [30], which indicates where

1
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-

benchmarks

2
https://edge.akamai.com/ec/us/highlights/keynote-speakers.jsp#edge2016futureofcommercemodal
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the programmer should focus their optimization efforts and quantifies the potential impact of

optimizations. The key idea behind causal profiling is to virtually speedup a selected line from the

program at run-time and measure the impact of this acceleration on the total execution time. Causal

profiling allows for the dynamic analysis of the critical path during application run-time. This

method abstracts dependency extraction and subsequent dependency graph processing providing

robust and adaptive what-if analysis of modern browsers. To apply causal profiling on web browsers,

we build COZ+ on-top of the COZ profiler [24], the only implementation of the causal profiler (to

the best of our knowledge). COZ+ virtually accelerates computation activities in the browser’s

page loading stages and computes the PLT improvement.

Contributions and findings. This paper makes the following contributions.

• We develop COZ+, an overhaul of the COZ profiler by adding multiple optimizations that

target profiling overhead and redesign several modules to make causal profiling practically

feasible and applicable to large applications. We further customize COZ+ for profiling the

Chromium browser (an open-source version of Chrome) since it is currently the most popular

browser for both desktop and mobile users [20]
3
.

• We perform comprehensive what-if analysis using COZ+ on the major stages of the web

browser’s page loading process for the top 100 most popular web pages from Alexa Top 500

list [1]. Our analysis provides practical findings about browser performance (which in some

cases contradicts prior work). For example, we observe that JavaScript contributes more to

the page loading critical path than HTML parsing [37, 40] and by optimizing this stage by

only 20%, the average PLT can improve by almost 5% on a desktop browser. This shows a

considerable difference in comparison with the mobile browser (less than 0.5% [37, 42]).

• We examine the impact of different factors such as hardware, caching optimization, and

network connection (varying network bandwidth and network delay) on the behavior of

computation activities. Our results show that improving network connection and enabling

caching have a small impact on PLT under typical network connections (i.e. bandwidth above

8 Mbps). From this, one can infer that computation is the bottleneck of current desktop

browsers.

Our findings shed light on which stages the browser developers should focus their optimization

efforts on to maximize overall performance. We observe that Scripting is the most influential stage

(most “bang for the buck”) followed by Styling and Layout irrespective of network bandwidth

and delay. This enables focused optimization efforts to achieve performance goals. COZ+ can also

benefit website designers. In addition to pinpointing the bottlenecks in their websites, COZ+ can

assist in choosing the most suitable optimization from a list of available optimizations.

2 WEB BROWSERS
In this section, we first outline the browser’s internal design and workflow. Next, we present the

primary challenge in analyzing the performance of browsers due to the inter-dependency between

the stages in the rendering pipeline. Finally, we provide an overview of the Chromium web browser,

which we choose as the case study for the what-if analysis.

2.1 Browser architecture
Over the years, several browsers with different features, user interfaces, and security levels have

come to the market. Regardless of their design and performance, they fundamentally share the

same architecture and workflow for rendering web pages. The core software component of all

major web browsers is a rendering engine (a.k.a. layout engine), which transforms the web page

3
COZ+ is easily adaptable to other Webkit-based browsers.
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plain content to the visual representation. Mozilla Firefox and Microsoft Internet Explorer (IE) have

their own respective engines called Gecko [7] and Trident [17]. Microsoft’s newer browser, Edge,

uses EdgeHTML (a fork from Trident) [11]. The rest of the well-known browsers such as Google

Chrome, Opera, and Safari are developed on top of the Webkit rendering engine [19].

HTML
parsing

Resource
Loader

Styling Layout Paint Compositing

Scripting

DOM Render tree

image
CSS file
JS file
. . .

mouse
keyboard
timer
touch
. . .

http

web server

1 2 3 4 5

6

Fig. 1. The general workflow for loading web pages.

responseStart
responseEnd

Redirect Browser
cache DNS TCP ResponseRequest

redirectStart
redirectEnd

fetchStart
domainLookupStart

connectStart
domainLookupEnd

connectEnd
requestStart

Fig. 2. Resource loading stack.

Figure 1 shows how browser engines load web pages. The process begins when the user submits a

URL request to the browser interface. Immediately after that, the browser’s Resource Loader initiates
an HTTPS request to fetch the main HTML file from the web server. Typically, the Resource Loader

downloads this file incrementally in order to hide part of the network delay with processing on

received chunks. Figure 2 demonstrates the resource loader’s internal workflow. When the first

chunk of HTML is downloaded, the rendering engine starts parsing HTML tags and building the

Document Object Module (DOM). DOM is an intermediate representation of the page content that is

represented by a tree data structure. HTML parsing is the first computation stage in the rendering

pipeline. During DOM construction, the HTML parser may request additional resources such as

another HTML file, a CSS file, a JavaScript file, images, etc. For each request, the Resource Loader

might apply DNS lookup and open a TCP port to download the object from the server or retrieve

the object directly from the cache (Figure 2).
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Among these resources, Cascading Style Sheet (CSS) files contain a set of rules that specify the

format and attribute (e.g. font and color) of the page elements. The browser parses these rules and

adds styling attributes to the DOM nodes. This stage referred to as Styling (stage 2) leads to the

construction of another tree called the render tree. Nodes in the render tree are visual elements with

the style characteristics that are ready to be displayed. In the third stage, Layout, the render tree
is traversed to calculate the relative size and geometrical position of the elements on the screen.

The fourth stage in the rendering pipeline is Paint, which is the process of mapping each visual

part of the elements into pixels. Filling pixels is often done in multiple layers. At the end of the

rendering pipeline, in Compositing, these layers are combined together to create a final view of the

web page. JavaScript or generally Scripting (stage 6) is another computation stage in the browser

that responds to the user interactions and handles the dynamic behavior of the web page. This

stage consists of evaluating, compiling and executing the scripts and usually has a separate engine

such as V8 in Google Chrome [18] or SpiderMonkey in Mozilla Firefox [14]. JavaScript, like most of

the other stages, has access to the DOM and can modify the DOM throughout the page loading

process as seen from Figure 1.

2.2 Inter-dependency and critical path
There exist inter-dependencies between the above rendering stages during the page load process

due to the fact that these stages constantly interact with the DOM. For example, JavaScript might use

document.write() to insert/modify HTML content. As a result, Styling cannot proceed until DOM

gets updated. To maintain coherency of DOM, access policies have been set by the browsers. For

example, HTML parsing is blocked when it reaches the <script> tag. This tag (unlike <async>
and <defer>) indicates that JavaScript might modify the DOM nodes. Therefore, the browser

executes JavaScript code and then resumes HTML parsing. This ensures that the HTML parser

accesses the updated DOM in the order that is declared in the context. In another scenario, JavaScript

might change the styling format of some DOM nodes. This necessitates the browser to complete

all ongoing CSS processes before servicing the JavaScript request. Wang et al. [40] analyze these

dependency policies and categorize them into flow dependency, output dependency, lazy/eager

binding, and resource constraints. All these dependencies restrict the browser’s task scheduler to

dynamically rearrange the order of stages, which in turn affects the PLT.

Figure 3 shows a concrete example of how these dependencies influence the PLT. In this example,

the browser initially downloads the main HTML file, a.html and then starts parsing and con-

structing the DOM. The HTML parser encounters an external stylesheet, b.css, in line 4 (<link>
tag) and starts loading it. Then, it parses a synchronize JavaScript tag, <script> in line 5, that

references an external script, c.js. This tag blocks HTML parsing. Compiling and evaluating the

external JavaScript resource, however, cannot proceed since the CSS file is still under evaluation.

Due to this inter-dependency, JavaScript waits until b.css is loaded and evaluated. Once the CSS

evaluation is done, the blocking script (b.js) is fully served and HTML parsing continues. Black

arrows in the timeline in the bottom of Figure 3 represent dependencies between these activities.

Ideally, if there were no dependencies, the three activities could be executed in parallel and the

PLT would be determined by the slowest activity. However, in practice, the dependencies lead to a

critical path as shown by the red dotted line. In this example, HTML parsing and parts of CSS and

JavaScript are all on the critical path. It is easy to see that modifying this example (e.g. swapping

line 4 and 5 in a.html to parse the script tag before the link tag or by manipulating the duration of

the activities) will affect the critical path composition and consequently the page load time. These

inter-dependencies between stages make characterizing PLT a daunting task.
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1 <html>
2  <body>
3   <p id="first_par"> old content  </p>
4   <link rel="stylesheet" href="b.css"></link>
5   <script src="c.js"></script>
      ...
7  </body>
8 </html>

a.html
1  #first_par{
2   font-family:courier;
3   text-align:center;
     ...

b.css

1  document.getElementById("first_par").innerHTML = "new content";
2  document.getElementById("first_par").style.color = "blue";
     ...

c.js

downlad a.html parse a.html

download b.css

download c.js evaluate c.js

parse a.htmlblocking <script>HTML

CSS

JavaScript

Time

parse b.css

Fig. 3. (Top) An example to illustrate the dependencies between the different activities. (Bottom) Timeline
showing page load activities. Black arrows represent the dependencies between activities and the red dotted
line shows the page load critical path.

2.3 Chromium web browser
According to StatCounter [21], Chrome is the most popular web browser in use for both desktop

and mobile devices. As of December 2018, it has 62.3% of the browser’s market share and no other

browser comes close. More specifically, Apple Safari has the second place with 14.7% of the market

share and Firefox lags far behind with only 4.9% of the market share.

Architecture. The rendering engine of Chromium, Blink [23], is forked from the popular Webkit

engine [19]. Chromium exploits process-per-site-instance architecture to protect the overall browser

from crashes, glitches, or malware in web pages [6]. In this architecture, the main process, browser
process runs the UI and manages tabs. One renderer process is created per web page instance.

Chromium processes have multiple threads that handle page rendering, process communication,

I/O operations, and so on, concurrently.

Most of the rendering stages like styling and layout run on the main renderer thread in the

renderer process. However, parsing new HTML content gets its own thread similar to painting

and compositing. JavaScript also runs on the main renderer thread, but with script streaming (new

technique since Chrome version 41), JavaScript parses the scripts on a separate thread. JavaScript

also interacts with the UI thread in the browser process to respond to user inputs. Moreover, it

might spawn new threads called web worker threads to handle computationally intensive tasks

in the background. In addition to these, resource loading and other network activities shown in

Figure 2 are managed by I/O threads [12].

Challenge. Figure 4 shows a snapshot of the page loading timeline for www.apple.com obtained
using the Chrome Trace Event Profiling Tool [16]. As we can see, multiple threads with different

activities are involved in the page loading process. The web browser’s complex architecture and

inter-dependency between activities running on various threads make analyzing the critical path

and page loading bottlenecks extremely challenging [2, 40, 46].

For comprehensive what-if analysis onmodern web browsers with sophisticated code organization,

web researchers and browser developers have to use a suitable tool. Conventional profilers for
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MessageLoop::RunTask

TaskQueueManager::DoWork
TaskQueueManager::ProcessTaskFromWorkQueue

ParseHTML
HTMLDocumentParser::processTokenizedChunkF

HTMLParserScriptRunner::execute
LocalWindowProxy::initialize

V8.NewContext

MessageLoop::RunTask
TaskQueueManager::DoWork

TaskQueueManager::ProcessTaskFromWorkQue

ResourceMsg_RequestComplete
WebURLLoaderImpl::Context::OnCompletedR

ParseAuthorStyleSheet
CSSParserImpl::parseStyleSheet
parseStyleSheet.tokenize parseSty

Fig. 4. Page load time for apple.com in April 2018. This timeline is obtained using the Chrome Trace Event
Profiling Tool [16].

browsers like the Chrome profiler in Chrome developer tools use traces to record the duration of

individual activity and do not quantify the effect of each activity on the PLT. Similarly, general-

purpose profilers such as gprof [9] only rank the most influential functions based on how much

time the program spends on them and do not report the potential impact of optimizing those

functions. Although these profilers report an accurate timing of functions, relying exclusively

on these statistics is not sufficient. For example, optimizing long JavaScript functions when the

rendering process is waiting for a file to be downloaded will not improve the PLT. On top of this,

the developer needs to have a deep understanding of the application source code to utilize these

statistics for what-if analysis. To identify the bottlenecks and their potential impact on PLT, we

need to consider the dependency between activities as well as the multi-threaded structure of the

browser. In the next section, we discuss our methodology to address the above challenges.

3 COZ+: A HIGH-PERFORMANCE CAUSAL PROFILER
In this section, we first describe a novel profiling technique first introduced in [30] and how it

can be leveraged to capture the dependencies in web browsers. Then, we present COZ+, a high-

performance causal profiler capable of analyzing large complex software systems.We use Chromium

(an open source version of the Chrome web browser) as our target case-study application.

3.1 Causal profiling
The key idea behind causal profiling [30] is to simulate the effect of speeding up a function by

slowing down all other concurrent functions. Unlike traditional profiling methods, this technique

virtually speeds up a selected line (e.g. a function call) at runtime and evaluates the subsequent

variation in total execution time in a parallel application. At first glance, this might seem infeasible

since the profiler needs to actively obtain information about the timing of all concurrent functions

at runtime to decelerate them proportionally. However, the causal profiler uses a sampling method

under the hood to frequently monitor threads and virtually speeds up the selected function by

slowing down concurrent threads proportional to the sampling frequency. The proof of concept is

presented in the original paper [30].

Figure 5 illustrates the concept of virtual speedup with a concrete example. The top timeline

shows the execution of the original program with two threads running functions A, B, and C

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 27. Publication date: June 2019.
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A (6) B (12)

C (8) A (8)

Thread 1

Thread 2

time

A (3) B (12)

C (8) A (4)

Thread 1

Thread 2

time

A (6)

A (8)

Thread 1

Thread 2

time

original
time

original
time

all inserted
delays+

speedup

speedup

1) No speedup

2) Actual speedup

3) Virtual speedup

18

1815

22 25

B (16) 4

C (11)3

Fig. 5. Illustration of the concept of virtual speedup and causal profiling. The top timeline shows the execution
of the original program with 2 threads running functions A, B, and C concurrently, the middle timeline
corresponds to actually speeding up function A by 50%, and the bottom timeline shows the effect of virtually
speeding up function A by 50%.

concurrently. The middle timeline demonstrates the effect of accelerating function A on the total

execution time. The range indicated by speedup shows the actual speedup of the program after

accelerating function A by 50%. The bottom timeline presents the effect of virtually speeding up

A. Whenever A is executing, all other concurrent threads are paused for a certain amount of time

depending on how much one intends to accelerateA (in this case, 50% of functionA). The difference
between the execution time of the program after virtual speedup and the original time of the

program with all inserted delays (for this example, two slices of delays) gives the same speedup as

actually optimizing A (middle timeline). In general, we can generate a what-if graph for function A
by varying the amount of virtual speedup in A and plotting the corresponding program speedup.

A key insight of this paper is to utilize causal profiling to apply what-if analysis to computation
stages in a web browser. There are multiple advantages in using a causal profiler over conventional

profilers for web browsers. First is the support for multi-threaded applications with a complex

dependency graph that have relatively short execution times. In this regard, it is a suitable candidate

for page load time profiling since PLT takes a few seconds on average in modern web browsers.

Second, we do not need to extract the dependency graph and apply graph processing to obtain the

impact of components since all potential impacts of optimizations can be derived from multiple

page loads for different speedups. Third, it captures the dynamic behavior of the application because

it applies virtual speedups directly into the execution path at runtime.
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3.2 COZ+
We introduce COZ+, a causal profiler capable of analyzing large and complex software systems such

as the Chromium browser. COZ+ is built on top of COZ [24], an open source causal profiler (and

the only such profiler available to the best of our knowledge). We originally intended to use COZ

to profile the Chromium web browser. However, we soon learned that, while COZ works for simple

benchmarks, it does not scale to large software systems due to several design and implementation

issues. Therefore, we built COZ+, a comprehensive overhaul of COZ, which provides flexible

profiling functionality for large applications as well as robust performance analysis capabilities for

the Chromium browser. The COZ profiler has approximately 4k LOC and we modify/add around

1k lines to build COZ+
4
. COZ+ is a standalone profiler and does not modify the browser source

code. As a result, it can be applied to other web browsers as well and we plan to add support for

other browsers in our future work.

Figure 6 shows the architecture of the COZ+ profiler broken down by the original design of COZ

(shown in black) and our modifications (highlighted in red). The process begins from the top right

of the figure, where COZ+ starts reading debugging symbols of the target application to construct

a hash table that maps instructions to the corresponding source line. This hash table is essential to

keep track of the application’s threads at runtime. COZ+ constantly references this hash table to

match the thread’s program counter with a line that is selected for speedup. After processing the

symbols and building a hash table, COZ+ creates a profiler handler and then executes the target

application.

At runtime, whenever the application spawns a new thread (via pthread_create()), the profiler
handler creates a new sampler and attaches it to the thread (also valid for the main thread). This is

indicated by the purple boxes in the figure. Each sampler has a timer that interrupts the thread

with a fixed frequency. Upon receiving a signal, the thread captures hardware/software counters

(e.g. program counter and call stack) and saves them into an appropriate data structure. This is

implemented via the Linux perf events [10] API which is a lightweight performance profiling tool

in the Linux kernel. In order to control processing overhead, samples are processed in batches.

COZ+ processes samples (process samples module in the figure) to determine if a thread is executing

the line that is selected for speedup. If it is, COZ+ suspends other threads for a certain amount of

time or might skip a thread if it is already in the wait state (e.g. acquiring a lock or I/O operation).

The thread suspension is handled via a relatively complex mechanism that is shown as the insert
delay module in the figure. Simply put, this module (1) calculates the amount of time each thread

needs to suspend and (2) prevents inefficient thread-to-thread communication by orchestrating all

suspensions through a global system. As indicated in the figure, we keep this module untouched in

COZ+. Finally, when the application terminates, the profiler handler processes the data from the

sampler’s counters and reports the result. This is shown in the bottom left of Figure 6.

In the rest of this section, we discuss the different design and implementation deficiencies of

COZ that limits its scalability and describe how COZ+ overcomes these limitations.

Optimizing symbol loading. Before the program begins, COZ records the executable debugging

symbols (DWARF) of the program from linking format files (ELF) into a hash table. Reading and

processing all the debugging information of Chromium with over 11 million lines of C/C++ code

and almost 270K source files is impractical as it takes hours to read and allocate a large amount of

memory at runtime. As a result, we only keep the compilation units that contain source files related

to the rendering stages and prune the rest (shown by a dotted red box at the top of Figure 6).

To scan the Chromium source code for footprints of the rendering stages, we take advantage of

Chromium traces [16]. Chromium traces record important browser activities including rendering

4
COZ+ is available open source at https://gitlab.com/coz-plus/coz-plus.
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run the program
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trace events

mark all call sites of
top functions

create hash table
(map instruction
pointer to stage)

application
(dwarf) 

read debugging
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pointer to 
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compilation units

Yes
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wrapper (per thread)pthread_create()

pthread_exit()

sampler timer
interrupt

Fig. 6. COZ+ profiler architecture. Black arrows and boxes show the original COZ design. Solid red elements
show our modifications and dotted red elements indicate new additions. Blue arrows and boxes show removed
logic.

activities for profiling purposes. However, it is not necessary to include the source file for all of the

low-level rendering activities in our case. It is sufficient to record debugging symbol of activity a
and discard activity b if a encompasses b (b is always called inside a). For each stage, we select the

set of non-overlapping top-activities that cover all stages. For example, Styling contains several

non-overlapping top activities such as CSS tokenizing, CSS token parsing, updating DOM style, etc.

Therefore, only the compilation units that contain top rendering activities are fed to COZ+ and the

rest are pruned.

In addition, we observed that COZ symbol processing module for compilation units maps some

of the debugging symbols to multiple lines. For example, COZ might map one inline symbol to

different lines if the file containing the inline symbol is shared between different compilation
units. We fix this issue in COZ+. More specifically, we first walk through DWARF file headers in

compilation units and exclude unnecessary files (those that do not have top activities in our case)

for line processing. With this optimization, the total symbol processing time reduced from a couple of
hours to less than a minute for each browser launch.
By combining the output of the symbol processor and those locations that are highlighted

as rendering top activities, we create a new hash table that maps debugging symbols to the
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corresponding stages (shown by the red dotted box at the top left of the figure). This hash table

enables the profiler to quickly determine the executing stage based on the instruction pointer

throughout the execution. Compared to the hash table used in COZ, the COZ+ hash table is lighter

(in terms of both access time and memory) as it only hashes the stage of the activities for relatively

fewer symbols.

Flexible sampling. Sampling rate and batch size are two important factors that impact the perfor-

mance and accuracy of causal profiling. The sampler frequency and batch size are hardcoded in

COZ. In COZ+, we make these parameters configurable. For example, if the experiments are short

(as in our case), then the sampling frequency should be high to capture all activities. Contrary to this,

sampling with high frequency in applications with lengthy tasks does not have any advantage and

increases the profiler overhead. Similarly, large batches, on the one hand, reduce sample processing

overhead, but on the other hand, postpone the threads’ suspension time which in turn sacrifices

the accuracy. Furthermore, batch size and sampling frequency should be set by considering the

number of active threads in the application. Since samples are processed asynchronously per thread

but they influence all concurrent threads (in the thread suspension process), frequent sampling in

applications with many threads greatly perturbs the application’s normal execution path.

PLT takes only a few seconds and we observe that a large number of rendering activities take

more than 20 milliseconds, therefore we set the sampling period to 2 milliseconds to have enough

samples. Considering this sampling frequency and the number of active threads (usually around 40

threads), we estimate the optimal batch size range to be from 6-15. Batch sizes less than this range

show pauses in the page rendering profile and those larger than this range shift the suspension

time to more than 30 milliseconds per activity, which drops the accuracy significantly if the PLT is

short. Therefore, for short web pages (PLT less than 4s), we set the batch size to 8 and for pages

with longer PLT, we set the batch size to 10.

Sample processing adjustment.We modified the sample processing module (the red box titled

process samples in Figure 6) in COZ+ for two reasons – (a) The original algorithm does not properly

consider the sample’s call sites. For example, COZ might wrongly accelerate a line if one of its

call sites already exists in the symbol table even though neither that line nor any of its call sites

match the selected line for speedup. (b) It is not compatible with our new symbol table. Algorithm

1 presents the pseudocode for COZ+ process sample module. For every unprocessed sample, COZ+

looks up the instruction pointer in the previously created hash table. If the symbol exists in the

table, it checks its stage with the selected stage for speedup. If the stages match, the thread adds its

local delay counter (which results in suspending other threads). When there is no symbol for the

sample’s instruction pointer, it is possible that the sample is captured in low-level activities. In this

case, COZ+ walks through the sample’s call sites and looks up every call site in the symbol table.

As soon as it finds a relevant stage in the call stack, it adds local delay if they are a match. During

processing sample’s call sites, the procedure might find samples that belong to stages other than

the selected stage. In this case, processing proceeds to the next sample without inserting any delay.

Multi-process profiling. Unfortunately, COZ could not profile multi-process applications. The

profiler handler can only attach to the initial process and manages the samplers of the threads in

the initial process. In our case, profiling the initial process (browser process) is not sufficient since

almost all of the rendering activities reside in other processes (renderer processes). Therefore, we
add multi-process profiling feature in COZ+ to make it compatible with most large applications. In

our implementation, the profiler handler attaches to any process that is forked at runtime. Since

each of the initiated processes has its own address space, they have to build a symbol table related

to their loaded module addresses. Reading and processing these compilation units for every forked

process at runtime is infeasible as it has significant overhead on the program. Therefore, COZ+

does symbol processing once at initialization and creates a symbol table with absolute addresses
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Algorithm 1 Pseudo-code for process samples module in Figure 6

1: procedure ProcessSamples
2: samples[]← get unprocessed samples

3: n ← number of unprocessed samples

4: selectedStage← selected stage for speedup
5: for i ← 1,n do
6: ip ← GetInstructionPointer (samples[i])
7: s ← FindStaдe(ip,hash)
8: if s , ∅ then ▷ symbol exists in hash table

9: if s = selectedStaдe then
10: AddDelay()

11: continue ▷ proceed to next sample

12: callchain ← get call sites of samples[i]
13: m ← length of callchain

14: for j ← 1,m do
15: s ← FindStaдe(callchain[j],hash)
16: if s , ∅ then ▷ symbol exists in hash table

17: if s = selectedStaдe then
18: AddDelay()

19: break ▷ proceed to next sample

within the compilation units in the shared memory. Whenever a new process is forked, it copies the

symbol table from shared memory to its local memory and updates symbols with their respective

address offsets.

Metrics and reporting: To achieve fairness between web pages, we use one metric representing

PLT in all the measurements. This metric requires definite starting and ending locations. Therefore,

in COZ+, we turn on and off samplers by the browser’s events. The added module starts sampling

when the navigationStart event is fired, which is the time the user enters the URL. However,

developers can use other events such as onBeforeRequest (to start profiling when the first HTTP

request is sent) or onHeadersReceived (to start sampling when the first byte is received) in this

new implementation. The same procedure pauses threads’ sampling. Since we are measuring PLT,

we use the loadFinish event in our experiments
5
. Some developers may prefer the above-the-fold

metric (the time that first content is shown on the screen), so they can use the FP (first paint) or

FMP (first meaningful paint) events. Due to variability in page load time (e.g. fluctuation in network

or browser garbage collection), COZ+ runs multiple experiments for each configuration. In order

to save some time and space for our study (our study has around 12000 experiments), unnecessary

data are eliminated from processing and reporting module.

3.3 Validation of COZ+
To verify the correctness of the integrated modules on top of COZ, we log all captured samples

along with the timing report of the infused delays of all threads for 10 web pages. Then, we match

them with the timing reports that come directly from the Google Developer Tool. For all the web

pages, COZ+ was able to determine the executing stages 100% correctly. The amount of added

5
A few studies use DOMcontentLoad (the time when all the HTML parsing is done and DOM is constructed) but our metric

waits until all the DOM objects are loaded.
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delay (speedup × samplinд period × number o f matched samples) shows less than 15% difference

with calculated delay from theory.

In addition, we evaluate COZ+ to see how well it can predict the effect of optimization on the

page loading process in a real scenario. Ideally, one should optimize the stages by a fixed amount

and then compare the PLT of a test web page before and after this optimization. This approach

is somewhat infeasible for the purpose of this paper since it requires significant research and

development even for a small optimization in the current browsers. For this reason, we intuitively

show this by bloating the browser code to simulate an unoptimized browser as our baseline.
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Fig. 7. Accuracy of what-if analysis with COZ+ on a test web page, www.diply.com.

As an example, we show our evaluations for the Scripting stage (since it turns out to be the

most influential stage for optimization in section 5). We choose www.diply.com as a test web page

because COZ+ estimated relatively large PLT improvement for this stage (approximately 26% PLT

improvement for 80% JavaScript speedup). We modify the Chromium source code and slow down

all Scripting activities such as script compiling, script executing, and callback functions invoked

via events or time-outs in the loading of the test web page to 5× of its original time. The injected

code keeps threads busy in CPU computations rather than holding the threads in the wait state as

it might invalidate the integrity of the experiment in the presence of a job scheduler. Given the

5× extended version of the code as a baseline, it is possible to report PLT improvement after 80%

and 20% stage optimizations (for the latter we compare the PLT with the 4x extended version of

the code). Figure 7 compares the result from this simulation (red line) with the output of COZ+

on the baseline (blue line). As we can observe, COZ+ is able to accurately predict the impact of

optimization and it shows less than 16% deviation from the simulation at 80% stage speedup and

about 12% deviation at 20% stage speedup.

4 EXPERIMENTAL SETUP
System. We conduct all the experiments on a MacBook Air with 2.2 GHz Intel Core i7 processor (4

threads with hyperthreading) with 4 MB cache and 4 GB RAM. The host OS is 64-bit Ubuntu 16.04

LTS. Our second system has Intel Xeon E5-2630v3 2.4 GHz processor. This system has a total of 16

cores with 40 MB cache and 64 GB RAM hosting 64-bit CentOS 7.

Build setup. We use Chromium version 62.0.3167 and build it with Clang 3.8. We build COZ+

with the same compiler version and configuration. To evaluate the impact of key computation
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activities in page loading, we build content-shell target of Chromium, which contains all the web

platform features including HTML5 and GPU acceleration but excludes some of the Chrome-specific

browsing features such as autofill, extension, and spellcheck. This makes our results more general to

be used by other browsers, particularly other Webkit-based browsers. We include all the debugging

symbols (is-debug=true and symbol-level=2) during the build as it is necessary for COZ+ to

build the symbol table.

Configuration.Wedisable Chromium security Sandbox (--no-sandbox) because it runs Chromium

in a protected environment and restricts COZ+ functionality on the browser.We also disableCaching
in our experiments to observe the effect of the network on PLT. However, we repeat our experiments

with caching enabled and demonstrate the effect of caching in section 5.2.

Experiment repeat. For each configuration, we load the page 10 times and report the median and

average along with the variance.

Network. The system is connected to 100 Mbps Ethernet. To measure browser performance, we

load web pages directly from the Internet, rather than using a local proxy. For wireless experiments,

we use Wifi with 64 Mbps downlink speed. To emulate various network conditions, we use Linux
traffic control (tc) [15] to limit bandwidth and network delay.

Web pages. Our test suite consists of top 100 web pages from Alexa Top 500 list in April 2018[1].

5 WHAT-IF ANALYSIS
In this section, we investigate the impact of the computation activities on PLT using COZ+. Then,

we examine the effect of hardware, network connection, and browser caching on the behavior of

computation activities and how they, in turn, impact PLT.

5.1 Impact of computation stages on PLT
We apply what-if analysis on all major page loading stages namely, HTML parsing, Styling, Layout,

Scripting, and Painting (which includes compositing and layering in our measurements). To show

the impact of these stages on browser performance, we run COZ+ to virtually accelerate activities

in these stages and record the improved PLT. We gathered data for 10 evenly spaced speedups

starting from 0% (no speedup) to 90% speedup (which means computing the stage 10× faster)

for all stages. For each of the web pages in our test suite, we measure PLT 10 times for all pairs

(s,x) : ∀s ∈ stages,∀x ∈ speedups and calculate the average PLT with no speedup, PLT s,0. Then,

we calculate PLT improvement for stage s and speedup x , ∆PLTs,x , as follows.

∆PLTs,x =
PLT s,0 − PLTs,x

PLT s,0

Plots [a-e] in Figure 8 illustrate the potential PLT improvement (PLT speedup) by stage as a

function of speedup of that stage (stage speedup) for four popular web pages that exhibit different

workload characteristics. Note that plots have different vertical scales. The plots also show the

median and variability in the measurements. As we can observe, the benefit of stage improvement

contributes to a diverse pattern among the web pages.

Finding 1. For the most part, we see a linear improvement in PLT. This indicates that there is

not enough concurrency between stages during page load, otherwise, we expect to see a change

in the slope of the graphs. However, in some cases, we can observe that different stage speedups

have different impacts on web pages. For instance, in plot (e), if we optimize Scripting activities in

imgur.com and ebay.com by 30%, COZ+ estimates an average page load performance improvement

of about 8% and 9% respectively. However, if we can speed up this stage by 80%, imgur.com benefits
26% more than ebay.com.
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(b) Styling
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(c) Layout
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(d) Painting
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(e) Scripting
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Fig. 8. (a-e) – Observed PLT improvement by accelerating browser stages namely, HTML parsing, Styling,
Layout, Painting, and Scripting respectively for 4 popular example web pages. (f) – Average PLT improvement
of Alexa Top 100 web pages. The boxplot displays the distribution of PLT speedup values. The boxes extend
from the first to the third quartile (the 25th and 75th percentiles) with a line inside showing the median.
Whiskers above and below the boxes extend from the minimum to the maximum value.
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Finding 2. Web pages also show divergent patterns between stages. For example, wikipedia.org
and github.com show marginal PLT improvement in Scripting in comparison to imgur.com and
ebay.com. On the contrary, COZ+ estimates them to achieve significantly higher PLT improvements

in Layout. This is related to the page content where one page could have many static elements and

complex DOM that spends most of the time in HTML parsing and Layout while another page could

have more dynamic elements to be evaluated by the JavaScript engine. Moreover, the organization

of these elements can affect these patterns which are context-dependent.

Plots [a-e] show that the impact of stage optimization on PLT is content-dependent. However, to

understand which of these stages is the primary bottleneck of browsers and furthermore, to predict

the benefit of optimizing that stage, we calculate the average PLT improvement of Alexa top 100

web pages for each stage. Plot (f) in Figure 8 depicts PLT speedup as a function of stage speedup

for the Chromium browser. The error bar shows the standard deviation of the mean.

Finding 3.We observe that JavaScript is the most influential stage compared to the other stages.

This plot indicates that if developers can optimize JavaScript by 80%, they conceivably can improve

browser page loading performance by almost 15%. Obviously, 80% improvement in any stage

requires a significant amount of effort but even a 20% speedup of this stage can potentially reduce

the average PLT by about 5% which can have a considerable impact on user experience, browser

popularity, and web business revenue.

Multi-stage analysis. In some cases, an optimization might target multiple stages. Due to the

inter-dependency between the stages, it is often difficult to estimate the final payoff based on

individual stage payoffs. To address this, COZ+ supports multi-stage optimization with a distinct

payoff per stage. For this purpose, COZ+ suspends concurrent threads whenever one of the stages

from a list of given stages is executing. The amount of delay inserted is now proportional to the

speedup of the executing stage. This feature aids developers in advanced decision making. One can

now compare the benefit of two optimizations even if they do not target the same set of stages

and/or have different speedups in similar stages.

Now, we repeat the what-if analysis by accelerating multiple influential stages simultaneously.

The purple solid line in Figure 9 shows the projected PLT improvement when we accelerate the

top two influential stages (JavaScript and Styling) simultaneously during page load. Here, 20%

stage optimization refers to 20% speedup in both JavaScript and Styling stages. Although COZ+

allows distinct speedup values for different stages, we choose the same speedup to compare against

single-stage analysis results. The dashed purple line is the sum of single-stage what-if speedups of

JavaScript (blue line) and Styling (red line).

Finding 4. The overlap of these lines indicates that optimizing JavaScript and Styling has an

additive payoff for the web pages in Chromium. We further track activities of these two stages and

observe that a majority of these activities (which are co-dependent) execute on the same thread (i.e.

main renderer thread) sequentially. While parts of script parsing run on other threads (web worker

threads), it turns out there is no dependency between the former and Styling activities running on

the main renderer thread.

Finding 5.We further extend our multi-stage analysis to include the third influential stage, Layout.

In this case, we do observe a gap between optimizing all the three stages together compared to the

sum of their individual speedups (black lines in Figure 9). This is due to dependencies between

activities of these stages with activities on the I/O thread (i.e. network activities) that shift part of

the critical path onto this thread.

5.2 Impact of PLT-variant factors
In this section, we examine the impact of key factors that influence PLT such as system architecture,

network connection, and browser caching optimization on derived what-if graphs.
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Fig. 9. Impact of accelerating multiple stages simultaneously on PLT. The solid lines correspond to accelerating
single- or multi-stages using COZ+. The dotted lines are the sum of the individual stage speedups.

Evaluation on a different system. Given that system architecture influences computation

activities, it is important to identify how much of the presented what-if results depend on the

underlying hardware. Accordingly, we repeat the what-if analysis on our second machine (the

system with Intel Xeon processor). Figure 10 shows the single-stage what-if analysis of Alexa

top100 web pages.

Finding 6. Comparing this with the results fromMacBook air (Figure 8(f)), we observe fairly similar

trends for all the five stages (albeit higher variability in PLT). This implies that stage optimization

payoff is fairly unrelated to the system architecture. Note that, while the impact of stages on PLT is

consistent between the two systems, the web pages are loaded 20% faster on average on the second

system.
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Fig. 10. Average PLT improvement of Alexa Top 100 web pages on a system with Intel Xeon E5-2630v3
processor.

Network connection. An interesting question that arises is: Does the network have an impact on
the outcome of the what-if analysis of computation stages? In order to evaluate network effects on
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potential optimization of the above stages, we conduct a similar experiment on the most influential

stages from the previous analysis (namely, Scripting, Styling, and Layout) under different network

conditions. We test different network connections, WiFi connection, and repeat the experiment

on a smaller subset of the web pages (40 web pages randomly picked from our initial test suite).

Network bandwidth and network delay are two factors that primarily influence resource loading

and potentially the critical path. So, we emulate multiple network conditions by controlling these

two network-dependent parameters.

0 20 40 60 80
stage speedup (percentage)

2

0

2

4

6

8

10

12

14

16

P
LT

 s
p
e
e
d
u
p
 (

p
e
rc

e
n
ta

g
e
)

JavaScript
Styling
Layout

16Mbps
8Mbps
1Mbps

JavaScript
Styling
Layout

16Mbps
8Mbps
1Mbps

0 20 40 60 80
stage speedup (percentage)

2

0

2

4

6

8

10

12

14

16

P
LT

 s
p
e
e
d
u
p
 (

p
e
rc

e
n
ta

g
e
)

JavaScript
Styling
Layout

50ms
100ms
200ms

JavaScript
Styling
Layout

50ms
100ms
200ms

Fig. 11. Effect of varying network bandwidth (left) and network delay (right) on PLT speedup for the top 3
influential stages on 40 web pages of the test suite.

The left plot in Figure 11 shows how network bandwidth contributes to what-if analysis of the

most influential stages. Different line styles are used to differentiate different network bandwidths,

namely 1 Mbps, 8 Mbps, and 16 Mbps, and different colors are used for the 3 critical stages. Note that

even though what-if graphs are shown with respect to the same baseline (i.e. 0 PLT improvement

with no speedup), web pages have different baseline PLT under different network connections. For

16 Mbps, 8 Mbps, and 1 Mbps, the average PLT are 7.8, 8.9, and 12.6 seconds respectively.
Finding 7. An observation from this figure is that network bandwidth does not change the pattern

of what-if plots and the order of the stages in terms of effectiveness. Scripting remains the most

influential stage followed by Styling and Layout, respectively. Moreover, this figure indicates that

improving network bandwidth increases the potential impact of computation stages on PLT which

is not surprising since it likely increases the fraction of the computation stages on the critical path.

Finding 8. Network bandwidth has roughly the same contribution in the top three stages. For

instance, the impact of Scripting on PLT is 1.7× more than Styling with 80% stage speedup under 1

Mbps bandwidth while this ratio remains almost constant (2×) at 8 Mbps bandwidth and (1.8×) at
16 Mbps. In general, stages’ what-if graphs scale equivalently by varying the network bandwidths.

Finding 9. This plot also shows stages’ what-if graphs exhibits a greater boost in PLT improvement

(y-axis) by increasing network bandwidth from 1 to 8 Mbps in comparison to increasing bandwidth

from 8 to 16 Mbps. For example, Scripting affects PLT roughly 60% more when bandwidth increases

from 1 to 8 Mbps (by 7 Mbps), but only around 7% when it increases from 8 to 16 Mbps (by 8

Mbps). Contrasting this with the result from the previous experiment (100 Mbps connection),

increasing the network bandwidth has an insignificant impact on what-if graph of stages on high-

speed connections. This reflects that computation stages in the Chromium browser are mainly

constrained by the computing power of the system and its dependency to other stages rather than

downloading resources for networks with a bandwidth of about 8 Mbps and higher.
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Results from different network delays are depicted in the right plot of Figure 11. We add 50 ms,

100 ms, and 200 ms delays to packets to increase the page RTT. The average PLT are 7.9 seconds
(50 ms), 8.7 seconds (100 ms), and 10.4 seconds (200 ms).

Finding 10. As we can see, increasing the network delay diminishes the potential impact of the

most influential stages. Even though we add 200 ms delay to web pages which is almost 5× the

average RTT of our test suite, PLT speedup does not decrease significantly. For example, the PLT

speedup drops by only 13% for 80% speedup in Styling.

Finding 11. Similar to the bandwidth experiment, network delay does not change the pattern of

graphs meaning latency in fetching resources on the critical path is almost consistent between

stages.

Caching. We enable caching and repeat the same experiment. The generated what-if graphs are

almost identical for all the stages in comparison with caching disabled experiments since caching

has a minor influence on PLT at 100 Mbps network connection (less than 5% for the majority of web

pages in our test suite) indicating that computation activities are the bottleneck. So, we examine

the caching effect under a slower network connection (1 Mbps). The average PLT without caching

is 12.4 seconds and with caching is 8.0 seconds.
Finding 12. Figure 12 shows that PLT improvement drops significantly by disabling caching.

As we can infer, an optimization targeting computation activities can approximately double its

payoff by enabling caching at 1 Mbps network connection. Notably, the COZ+ what-if graphs with

caching enabled reflect approximately similar stage impacts in comparison to stage impacts under

high-speed connection. This is likely because almost all of the referenced objects before LoadFinish
event are cached and retrieved quickly, so again computation activities build up the critical path.
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Fig. 12. Effect of caching on what-if graphs under a slow connection (1 Mbps).

6 RELATEDWORK
Profiling and performance analysis tools. Majority of the browsers have their own profiler.

Gecko profiler [8] for Mozilla Firefox and Chrome profiler [16] for Google Chrome are examples of

such profilers. These profilers provide statistics about task timing, JavaScript call graph, memory

usage, and network activities. Chrome takes a step further and collects a set of web-assistant tools

under Chrome DevTools that guide web developers to diagnose their web pages [5]. The Chrome

DevTools performance analyzer provides a brief summary of the time spent on each of the stages
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and can also graphically show limited dependencies between fetched resources. However, they are

not adequate for characterizing the behavior of the critical path and shift the what-if analysis to

the user.

In addition to dedicated profilers, there are multiple tools that can assist users in recognizing

the performance bottlenecks of web pages. PageSpeed Insights [4] is a web-tool that measures

the above-the-fold load time and full-page load time for a given web page. Depending on the

performance headroom of a web page load, it offers some suggestions (from a list of well-known

web page optimizations such as “elimination of render-blocking JavaScript”) on how that page can

be improved. PageSpeed does not take into account network-dependent activities in performance

analysis. Also, in the critical path exploration, it excludes lazy/eager binding dependencies and

resource constraints as well as dependencies involving cached objects [40]. Yslow [22] is a similar

tool that statically analyzes the page by crawling the DOM and capturing the information of DOM

objects (size, whether it is gzipped, etc.). Then, it grades the page based on 23 pre-defined rules

related to objects information and provides performance improvement suggestions. As far as we

know, none of the existing tools are able to provide a quantitative and accurate what-if analysis as

we offer for page loading.

Critical path analysis. WebProphet [33] reveals dependencies between objects via perturbation

of network loads. It systematically delays individual object download time and builds parental
dependency graph (PDG) for a web service. This framework can predict PLT based on PDG and

client/server network conditions. Their basic object timing extractor is limited to network activities

such as DNS lookup, establishing a TCP connection, and HTTP request/receive. It does not take

into account the impact of computation activities in dependency extraction or in performance

prediction.

The closest research to our measurement setup is Wprof [40], which is able to demystify page

load performance. Wprof assigns a unique ID to the resources and individual loaded objects. It

then derives a dependency graph from a set of pre-defined resource constraints and dependency

policies between only those activities that are associated with loaded objects. Besides extracting the

dependency graph, it breaks down the critical path of 150 web pages from computation and network

aspects. Further examination of the computation activities (authors observe that computation

activities make up 35% of the critical path), discloses HTML parsing costs more than Javascript and

rendering stages in the critical path. This is in contrast to our findings that show that Javascript

and Styling play a more critical role. Apart from dissimilarities in experimental setup
6
, we believe

the time breakdown of the critical path does not essentially manifest the impact of optimization

since a component’s optimization could affect the execution order of activities in an event-driven

application.

Nejati et al. [37] extend Wprof for mobile devices and exploit the same methodology to compare

non-mobile browser with mobile browser page load process. The key takeaway from the critical

path breakdown is that computation activities outweigh network activities in the mobile browser

contrary to the desktop browser, particularly for mobile websites. Even though they have analyzed

page load critical path composition, similar to [40], it is debatable to derive what-if analysis based

on static examination of the critical path. In addition to this limitation, [37] does not provide

evaluations on rendering stages like painting or layout.

Prior to [37], Wang et al. studied the slowness of page loading on smartphones [42]. The authors

use a fairly similar approach to Wprof to record the dependencies and timestamps of the main

functions for IR operations (computation stages) as well as resource loading for 10 most visited

6
[40] uses an older version of Chrome, v.22, which does not support some of the major page loading optimizations like

Blink threaded HTML parser.
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web pages. Despite the fact that they have tested on mobile devices with 3G and emulated Ethernet,

their observations show significant divergence with our findings. As an example, with 32× speedup

of Layout, they only observed 1.4% improvement in PLT which is in contradiction to our findings.

The advantage of causal profiling over previous approaches is that it eliminates dependency

graph extraction, which in turn improves the reliability of measurements. This is crucial since

existing tools do not take into account low-level inter-dependencies [40]. In addition, with causal

profiling, it is possible to generate a quantitative what-if analysis of the page load considering the

dynamic behavior of the critical path.

7 CONCLUSIONS
In this paper, we investigate and prioritize the bottleneck activities in modern web browsers. We

primarily attempt to demonstrate the impact of these activities on the browser’s page loading

performance. To provide a meaningful estimation of how much benefit can be achieved by im-

proving the critical activities, we present COZ+, a lightweight and customized profiling tool for

current browsers. Incorporating COZ+ in the Chromium browser reveals that Scripting is the most

influential stage for improving PLT for the Alexa top 100 most visited web pages. Our results

show that improving this stage by 40% can potentially improve the performance of the Chromium

browser by almost 8.5%. We also observe, contrary to some of the previous studies, that HTML

parsing has a small contribution to PLT. Furthermore, our evaluation indicates that network condi-

tions and caching influence the impact of computation activities. However, under typical network

conditions (e.g. 8 Mbps connection), they have a negligible impact since the browser is bottlenecked

by the computation activities. This would be of greater importance in mobile browsers since mobile

devices have limited computing power. In our future work, we plan to extend COZ+ to mobile

devices and analyze the mobile browser’s limitations using a similar what-if style analysis. We

believe COZ+ will be a useful tool and analysis technique for web researchers to prioritize their

efforts on the most influential page load activities.
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