
3

adPerf: Characterizing the Performance of Third-party Ads

BEHNAM POURGHASSEMI, University of California, Irvine, USA
JORDAN BONECUTTER, University of California, Irvine, USA
ZHOU LI, University of California, Irvine, USA
APARNA CHANDRAMOWLISHWARAN, University of California, Irvine, USA

Monetizing websites and web apps through online advertising is widespread in the web ecosystem, creating
a billion-dollar market. This has led to the emergence of a vast network of tertiary ad providers and ad
syndication to facilitate this growing market. Nowadays, the online advertising ecosystem forces publishers
to integrate ads from these third-party domains. On the one hand, this raises several privacy and security
concerns that are actively being studied in recent years. On the other hand, the ability of today’s browsers to
load dynamic web pages with complex animations and Javascript has also transformed online advertising. This
can have a significant impact on webpage performance. The latter is a critical metric for optimization since it
ultimately impacts user satisfaction. Unfortunately, there are limited literature studies on understanding the
performance impacts of online advertising which we argue is as important as privacy and security.

In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior
efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser’s page
loading process to demystify the performance cost of web ads. We aim to characterize the cost by every
component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad’s performance with
detailed guidance. For this purpose, we develop a tool, adPerf, for the Chrome browser that classifies page
loading workloads into ad-related and main-content at the granularity of browser activities. Our evaluations
show that online advertising entails more than 15% of browser page loading workload and approximately
88% of that is spent on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages
include fewer and well-optimized ads. We also track the sources and delivery chain of web ads and analyze
performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad
domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include
unknown third-party ads which in some cases build up to more than 37% of the ads performance cost.

CCS Concepts: • Software and its engineering→ Software design engineering; • Information systems
→ Display advertising; • Networks → Network performance analysis.

Additional Key Words and Phrases: Third-party online ads; page load time; fine-grained performance mea-
surement and analysis; Chrome browser

ACM Reference Format:
Behnam Pourghassemi, Jordan Bonecutter, Zhou Li, and Aparna Chandramowlishwaran. 2021. adPerf: Charac-
terizing the Performance of Third-party Ads. Proc. ACM Meas. Anal. Comput. Syst. 5, 1, Article 3 (March 2021),
26 pages. https://doi.org/10.1145/3447381

Authors’ addresses: Behnam Pourghassemi, University of California, Irvine, Irvine, CA, USA, bpourgha@uci.edu; Jordan
Bonecutter, University of California, Irvine, Irvine, CA, USA, jbonecut@uci.edu; Zhou Li, University of California, Irvine,
Irvine, CA, USA, zhoul15@uci.edu; Aparna Chandramowlishwaran, University of California, Irvine, Irvine, CA, USA,
amowli@uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2476-1249/2021/3-ART3
https://doi.org/10.1145/3447381

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

https://doi.org/10.1145/3447381
https://doi.org/10.1145/3447381

3:2 Behnam Pourghassemi et al.

(a) ebay.com in 2002 (b) ebay.com in 2020

Fig. 1. Evolution of ads on the web. (a) Early web ads contain text, image, and hyperlink. (b) Today’s complex
and dynamic web ads (rotating on top of the website) contain JavaScript, animation, multimedia, and iframe.

1 INTRODUCTION
Online advertising (essentially display ads on websites) has proliferated in the last decade to the
extent where it is now an integral part of the web ecosystem with a multi-billion dollar market
[14, 33, 35]. Today, publishers display multiple advertisements (or ads) through pop-ups, banners,
click-throughs, iframes, widgets, etc., to monetize their websites and web apps. The majority of
these ads neither come from the publisher (website) nor a specific domain. They are delivered
through a chain of third-party content providers (such as ad providers, syndication agencies, ad
exchange traders, trackers, and analytics service providers) who are part of a complex ad network
on the server-side [39]. The current ad delivery method forces publishers to embed unknown
third-party content (such as JavaScript or HTML) on their website which could jeopardize user
privacy and security. There have been several studies in recent years to locate the untrusted sources
and malicious ad contents [27, 28, 34, 39, 42, 43]. Accordingly, different blocking and evasion
policies have been devised to guard against such malware and aggressive tracking [28, 41, 57, 58].
While user privacy and security are of paramount importance, it is not the solitary concern of the
worldwide web community. Online advertising also has a direct impact on website performance
(eg., page load time) and in turn user satisfaction. According to Google, 53% of mobile site visitors
leave a page that takes longer than three seconds to load [26].
Web ads have become more diverse and complex keeping up with the pace of advances in web

design. Figure 1 compares advertising on ebay.com in 2002 and 2020. As we can observe, in the
past, ads only included hypertext and images. However, today’s online ads comprise of JavaScript,
iframe, animation, multimedia, etc. Evaluating and displaying these dynamic ad contents demand
increased computation from the browser and competition for the user’s device resources. Coupling
this observation with recent studies [44, 48, 54] that show that most of the page load time is spent
on computation activities in modern browsers raise three key questions:

• How much do ads increase the browser’s page loading workload?
• What type of web documents and browser activities contribute most to this workload?
• What kind of sources deliver web-ads and how much do they contribute to its performance cost?

Gaining insight into the above questions and understanding how much ads contribute to the
breakdown of different activities in modern browsers can inform the design of efficient ads and
optimizations targeting those specific activities. Unfortunately, only a handful of studies [30, 36, 38,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:3

50] have been devoted to the performance analysis of ads, yet many such important open questions
remain to be answered.

Previous studies revolving around the performance analysis of ads lack a comprehensive exami-
nation for at least the following reasons. First, the majority of them concentrate on the network
data traffic overhead, neglecting the performance cost of browser computation activities such
as rendering activities [36, 50]. Second, prior efforts fundamentally share the same approach for
quantifying the performance of ads. They use ad-blockers to block websites’ ad contents and
assess the performance overhead via comparison with vanilla run (no ad-blocking). This approach,
however, is prone to inaccuracy as it does not take into account the intrinsic overhead of the
ad-blocker. Our measurement of over 350 websites shows that Adblock Plus [4]–the most popular
ad-blocker–adds 32% overhead (median) to the page loading even though it reduces the overall
page load time by aggressive content blocking. Furthermore, ad-blockers lead to site breakage and
undesired app functionality, particularly, with the prevalence of anti-ad-blockers [38, 40]. Finally,
the ad-blocker approach suffers from an inability to perform comprehensive and fined-grained
performance analysis. This stems from the way ad-blockers operate where ad-related content is
blocked as early as the initiation of network requests. Thus, subsequent ad-related activities such
as content parsing, descendent resource loading, and rendering remain invisible for inspection.
In this paper, we investigate the performance overhead of all types of ad-related content by

crawling over 500 websites on different systems (laptop and smartphone). Unlike previous efforts,
we take a novel approach based on in-browser profiling that does not rely on ad-blockers. Our
methodology allows the browser to automatically fetch and evaluate ads’ performance at scale.
It correlates the browser’s computation and network activities to the associated ad contents and
quantifies the added cost of ads. We break down the performance overhead to individual requests
and content types through a resource mapping technique. This procedure contrives a more robust
and detailed performance analysis. Moreover, we demystify and track down ad components on
the publisher and characterize the performance overhead considering the origin of ads and how
they are delivered to the publisher. To the best of our knowledge, this is the first time such an
experiment has been conducted.

Contributions and Findings. To summarize, this paper makes the following contributions.

• We employ a different yet more appropriate methodology to characterize the performance
overhead of ads. Ourmethod avoids using ad-blockers, yielding higher accuracy and capability
for fine-grained measurements while suppressing site breakages and app failures observed
in prior studies. We develop a tool, adPerf based on our technique for the Chrome browser
since it is the most commonly used browser by desktop and mobile users. The key challenge
we encountered is how to align the performance cost with individual components within
an ad (e.g., image and JavaScript code), and we address this through a carefully designed
resource mapper (section 3).

• Using adPerf, we perform an in-depth and comprehensive evaluation to demystify and locate
the performance cost of web ads. We crawl and analyze over 500 websites from different
categories. Our large-scale examination leads to several first-of-a-kind findings that shed
light on the performance cost of ads, giving website builders and web ad providers a deeper
understanding to mitigate the performance penalty of ads. For example, our results show
that on average 15% of browser page loading activities are spent on ad-related content for
Alexa top 350 news websites (section 6).

• To perform a detailed source-to-target analysis of web ads, we construct the dependency
graph for the website’s resources and track the delivery chain involved in third-party ads.
The results show that googletagservices.com and doubleclick.net, two reputable ad

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:4 Behnam Pourghassemi et al.

domains, contribute 35% of the ad resources resulting in the largest performance cost of online
advertising. Moreover, we characterize the trustworthiness and prevalence of third-party ad
domains and distinguish the performance overhead of such domains on the web ecosystem.
Almost half of the highly-visited websites implicitly trust uncommon third-party ad domains
and our results show that about 37% of ads performance cost is related to untrusted ad
domains (section 6.3).

• To assess the impact of the platform on the performance overhead of ads, we compare
our performance evaluations on a laptop connected to high-speed WiFi with a smartphone
connected to a cellular network. We observe ads cost 7% less on a smartphone, both in
rendering and network, as they are comparatively less prevalent and highly optimized in
mobile pages (section 6.4).

• adPerf and the detailed measurement results are available at https://gitlab.com/adPerf/adPerf.
adPerf can be leveraged by web researchers and developers for deeper performance evaluation
of ads and reducing the overhead of ads. Specifically, we present two compelling use-cases of
adPerf for the efficient design of ad intervention and to improve the performance of ads in
section 6.5. Additionally, we compare our takeaways with previous studies in the literature
(section 7), and discuss similarities and inconsistencies.

2 BACKGROUND
In this section, we first outline the limitations of the current approaches in analyzing the perfor-
mance of ads. Then, we provide an overview of the browser’s internal design and workflow.

2.1 Ad blocking and performance analysis
Ad blocking is a defense mechanism against advertising and tracking that is wildly deployed
by end-users. According to Statistica [19], the global number of clients with connected devices
to ad blockers is steadily increasing, and more than a quarter of Internet users in the US were
blocking ads in 2019 [2]. Popular ad blockers such as AdBlock [3], Adblock Plus [4], uBlock [22],
and Ghostery [13] install as browser add-ons and use filter lists to block web ads and trackers.
While user privacy and security are crucial, even ads that are safe and not tracking users can have
a significant performance impact that has cascading effects on user satisfaction and Internet costs.
Some notable studies [30, 36, 50, 52, 56] lean on ad blockers to measure the performance cost of
web ads. The key distinction between our approach and prior efforts is that we do not rely on ad
blockers and content-blocking for performance analysis of ads for three main reasons:

Overhead.Multiple studies [36, 38, 53] report ad blockers themselves have significant perfor-
mance overhead due to exhaustive filter-list matching, tracking services of their own, and running
background scripts. Our results also affirm this observation. We analyze AdBlock Plus by creating a
modified version that still performs all of the content filtering operations without actually blocking
any of the content. We calculate the overhead imposed by these filtering operations by measuring
the difference in page load times from the modified version of Adblock Plus to the vanilla instance
of Chrome. Figure 2 shows the overhead of Adblock Plus on 350 webpages in our corpus (see
section 5). According to the figure, for half of the websites, Adblock Plus adds more than 32%
overhead to the page loading due to excessive and CPU-intensive filter rule matching and add-on
background activities. Although it may ultimately reduce page loading workload and network cost
by aggressive content blocking, it’s an inaccurate tool for studying the performance impact of ads.

Functionality. As ad blockers become a threat to the "free" web business model, many websites
prevent displaying their content to the visitors that use ad blockers. In this case, the publisher
includes a script such as IAB ad block detection script [1] that monitors the visibility of ads to DEAL
(Detect, Explain, Ask, Limit) with ad blockers [45]. Typically, when the publisher detects a hidden

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

https://gitlab.com/adPerf/adPerf

adPerf: Characterizing the Performance of Third-party Ads 3:5

0 20 40 60 80 100 120 140 160 180 200 220
% Overhead for Page Load Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 W

eb
sit

es

CDF of % Overhead for AdBlockers

With Modified Adblocker

Fig. 2. CDF distribution of AdblockPlus overhead on
the page loading of 350 webpages.

Fig. 3. Snapshot of www.forbes.com. This website pre-
vents loading contents if visitors attempt to block ads.

or removed ad, it immediately stops loading the website by displaying a popup that asks the visitor
to turn off the ad-blocker. Figure 3 shows a snapshot of the content-blocking of www.forbes.com
when ad blocker is on. As reported, a large portion of the web, 6.7% of Alexa top 5000 [47] and
16.3% of the top 1000 popular live streaming sites [51] use this anti-adblocking system.

Besides, content-blocking can also lead to site breakage and other undesired app functionality [40].
This breakage can range from a dysfunctionality in part of the website (e.g., not displaying login
popup) to the breakdown of the entire website layout. For instance, figure 4 shows a snapshot
of www.store.vmware.com when Mozilla’s ad and tracking protection is turned on. Furthermore,
a large number of websites employ ad blocking circumvention to evade from ad blocking. For
instance, www.thoughtcatalog.com and www.cnet.com obfuscate advertising URLs when they
detect that the ad blocker is on. As a result, the resources are translated to the local servers and
eventually displayed on the page. In all of the above cases, performance analysis of ads through ad
blocking is infeasible which limits its scope.

(a) Before content blocking (b) After content blocking

Fig. 4. Snapshots of www.store.vmware.com. The layout of the page is broken due to content blocking.

Fine-grained analysis. Ad blockers block content as early as the initiation of network requests,
which results in two drawbacks. First, it prevents fine-grained performance analysis at the browser
level because activities such as content parsing and rendering related to the blocked ad become
invisible for analysis. Hence, the current body of work focuses on the network data traffic overhead,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:6 Behnam Pourghassemi et al.

neglecting the in-browser computation overhead of ads. Second, because the content is blocked at
the network request, resources that are further requested by the blocked document during page
loading become invisible for inspection. For example, when an ad exchange1 (e.g., Google AdSense)
script is blocked, the source(s) of the blocked ads is hidden.

Our approach addresses the above limitations and enables an in-depth performance analysis of
ads without adding significant overhead. As a result, our measured cost is more reliable and reveals
some anomalies with previous studies that we discuss in section 7. Plus, our framework measures
performance cost of ads on every website. This is highly substantial in term of functionality because
we examine only 15% of our test corpus (≈ 50 websites) and discover 10 websites to have one of the
discussed issues with ad-blocker. Ultimately, we do not block any content, this gives us the ability
to correlate the performance cost of ads to the sources (domain analysis) as well as break down the
computation cost at a finer level of granularity (browser activities) which have not been studied
before. We present our first-of-a-kind findings from this fine-grained characterization in Section 6.

2.2 Browser architecture
A key to our performance characterization is measuring the amount of work the browser spends
on loading the primary content of the page and the additional work in loading ads. Differentiating
the two workloads (primary and ad content) requires an understanding of the way browsers load
webpages. Here, we outline the browser’s high-level design and workflow.

HTML
Parsing Styling Scripting

Layout Composite Paint

DOM
Tree

Render
Tree

Layout
Tree

Layer
Tree Display

Resource Loader

HTML CSS JavaScript

Fig. 5. High-level architecture of the web browser. The
components include the resource loader (purple), six
major computation stages (green), and the intermedi-
ate trees (yellow) in the page loading pipeline.

MessageLoop::RunTask

TaskQueueManager::DoWork
TaskQueueManager::ProcessTaskFromWorkQueue

ParseHTML
HTMLDocumentParser::processTokenizedChunkF

HTMLParserScriptRunner::execute
LocalWindowProxy::initialize

V8.NewContext

MessageLoop::RunTask
TaskQueueManager::DoWork

TaskQueueManager::ProcessTaskFromWorkQue

ResourceMsg_RequestComplete
WebURLLoaderImpl::Context::OnCompletedR

ParseAuthorStyleSheet
CSSParserImpl::parseStyleSheet
parseStyleSheet.tokenize parseSty

Fig. 6. Snapshot of the browser activities in loading
www.apple.com that are executed on tens of threads.
The zoom area shows the call stack (y-axis) of one
thread over time (x-axis).

Modern browsers have different features and user interfaces but they are based on the same
architecture to load webpages. Figure 5 shows the browser’s high-level page loading workflow.
The process begins when the user submits a URL request to the browser interface. The resource
loader initiates HTTP requests and fetches resources (network activities) from the server. Once the
resource is downloaded (incrementally or fully), the six major computation stages (shaded green)
evaluate the resources and render the website. The computation stages are HTML parsing (builds
the Document Object Model or DOM tree), Styling (evaluates stylesheets and adds attributes to
the DOM tree), Scripting (responds to user interactions and dynamic behavior of the page), Layout
(evaluates size and position of DOM elements), Composite (combines graphical layers), and Paint
(maps layers to pixels). Each of these stages is composed of multiple sub-tasks. We will refer to

1A platform for buying and selling of advertising inventory from multiple ad networks through real-time bidding.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:7

these sub-tasks as activities in the rest of this paper. For example, the HTML parsing stage consists
of byte stream decoding and preprocessing, tokenizing, and DOM tree construction activities.
The browser invokes the computation activities frequently during page loading. Figure 6 illus-

trates a snapshot of activities when loading www.apple.com. As we can observe, there are numerous
and the order in which these activities execute is based on the dependency imposed by the page
content. For instance, if JavaScript modifies an attribute of a DOM element, this forces the browser
to recalculate the style, update layouts, composite layers, and repaint the screen. This is commonly
known as reflow and can have a significant impact on performance. However, if the JavaScript
only modifies the color of a DOM node, the reflow pipeline bypasses layout and if the change does
not modify the graphical layers, the reflow also bypasses compositing. Moreover, browsers exploit
parallelization between independent activities to accelerate page load time as seen in the figure.
Due to the dependency between activities, dynamic parallelization, and stochastic behavior of the
browser in resource downloading and dispatching tasks, the time of each activity is indeterminate.
Therefore, tracking the dependency chain between browser activities and associating them to the
corresponding workload type, i.e., ads or non-ads, are challenging.

3 METHODOLOGY AND adPerf
To distinguish the performance cost of web ads from the primary content (non-ads), we apply
a systematic approach. First, we extract all browser activities that are associated with the page
loading process. Second, we identify which resource (i.e., a web document) explicitly or implicitly
initiates each browser activity. Third, we classify activities into ads and primary content based on
the resource type initiating the activity. Finally, we measure the total execution time spent on each
class of activity as a performance index distinguishing the workload in each class.
To realize the above methodology, we design and implement a tool, adPerf, for the Chrome

browser. Note that adPerf can be extended to support other browsers since the same technique
applies to all browser architectures. Figure 7 shows the design of adPerf. Below, we describe the
four modules of adPerf – crawler, parser, resource mapper, and graph builder in detail.

3.1 Crawler
The first module in adPerf (top of the figure) is a crawler (Node.js script) that sets up the headless
Chrome and crawls websites. The crawler uses the Chrome remote protocol APIs [8] under the hood
to interact with the browser and streams Chrome traces [21] to a file. Chrome traces are primarily
used for profiling and debugging the Chrome browser and are low-overhead. Tracing macros
cost a few thousand clocks at most [21], and the logging to file happens after the page is loaded.
Chrome traces are capable of recording intermediate browser activities, including page loading
activities in the Blink rendering engine and V8 JavaScript engine with microsecond precision. Each
trace contains information about the associated activity, such as thread id, activity name, function
arguments, etc. Below is an example trace for a Scripting activity:

{ " p id " : 5 4 ,
" t i d " : 3 5 ,
" t s " : 8 1 407054 ,
" ph " : "X" ,
" t t s " : 1 1 9412 ,
" dur " : 8 3 9 ,
" c a t " : " d e v t o o l s . t im e l i n e " ,
" name " : " E v a l u a t e S c r i p t " ,
" a r g s " : { " d a t a " : {

" u r l " : " h t t p s : / /www. google − a n a l y t i c s . com / l i n k i d . j s " ,
" l ineNumber " : 1 ,
" columnNumber " : 1 ,
" f rame " : " EFF8B95C2 " } } }

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:8 Behnam Pourghassemi et al.

Additionally, the crawler intercepts network requests, i.e., onBeforeRequest event, and extracts
the header and body of every HTTP request. This data is necessary for resource matching.

3.2 Parser
When the website is loaded, the raw Chrome traces are fed to the parser as shown in the figure.
The adPerf parser does two tasks – pruning and data extraction.

Pruning. The parser goes through the traces and extracts all page loading activities and prunes
the browser-dependent ones (such as browser garbage collection and inter-process communication
activities). We use the same subset of traces that robust tools such as Chrome devtools timeline
[9], Google Lighthouse [17], and COZ+ [48] collect for performance analysis and page loading
workload characterization. The resulting activities are associated with one of the six browser stages
shown in Figure 5. For instance, the parser considers every trace connected to script evaluation,
V8 script compiling, V8 execution, callback functions triggered by browser events (or timeouts)
among others as part of the Scripting stage.

Data extraction. For each activity, the parser extracts the following data: start time, end time,
relative stage, thread and process ids, and function arguments if they contain resource information.
This data is necessary to construct the call stack and attribute activities to resources.

crawler

Zbrowse

graph
builder

ad related
activities

non-ad
activities

filter list

network
requests

resource mapper

resources
child-parent
information

Resource
dependency graph

Chrome remote
protocol API

Chrome browser

parser

pruning

data extraction

{"pid":54, ts":81407054,"ph":"X",tts":119412,
"dur":839, "cat":"devtools.timeline",
"name":"EvaluateScript", "args": {"data":{
"url":"https://www.abc/lid.js",
"lineNumber":1, "columnNumber":1,
"frame":"EFF8B95C2"}}}
{"pid":54, ts":81419234,"ph":"X",tts":1412,
"dur":537, "cat":”ipc”}}}

Chrome traces

classification

construct
call stack

assign resource
& rule matching

Fig. 7. Design of adPerf. The four core modules are
crawler, parser, resource mapper, and graph builder
that are shown with dark boxes.

HTML Parsing Event: DOMContentLoaded Timer Fired

Evaluate Script

Compile
Script updateList()

appendChild()
Recalculate

Style Layout

Composite
Layers Paint

Layout Invalidate Schedule Style Recalculation

Callback Function

makeRequest()

Callback
Function

InsertBefore()

getAttribute() getScroll()

time

th
re

ad
 ca

ll
st

ac
k

Fig. 8. Call stack timeline for a Chrome thread con-
structed by adPerf resource mapper. The resource map-
per assigns a resource to each activity using the in-
formation in the traces (orange activities with solid
texture) and call stack (orange activities with dotted
texture) for parsing and evaluation activities and tracks
initiator for tree manipulation and rendering activities
(purple activities).

3.3 Resource mapper
Once the traces are parsed and categorized, this data and network information extracted by the
crawler are input to the resource mapper. The task of the resource mapper is to assign each activity
to an associated resource. Unfortunately, we observed that a significant number of traces (about
30%) do not contain any resource information. In such cases, the resource mapper has to derive
this relation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:9

To address the above challenge, the resource mapper first builds a call stack of activities for
every thread by tracking the start time and end times of activities executed by each thread. Figure
8 shows the call stack timeline for a sample activity for a browser thread where activities are
shown with boxes. After constructing call stacks, the resource mapper classifies activities into two
groups – parsing and evaluation and tree manipulation and rendering. The former contains activities
that explicitly relate to a resource such as HTML parsing, image decoding, stylesheet parsing, and
JavaScript evaluation that directly operate on a document. Activities belonging to this group are
colored orange in the figure. The latter contains activities that implicitly relate to a resource. These
include activities in styling (except stylesheet parsing which belong to the former group), layout,
composite, and paint stages that deal with the browser’s intermediate data structures (trees) and
display. Purple activities in the example belong to this group. Finally, the resource mapper finds
the corresponding resource for each activity group as follows.

Parsing and evaluation. For the majority of the activities in this group, the resource mapper
extracts the resource file information from function parameters extracted by the parser. Orange
activities with solid texture such as HTML Parsing and Callback Function in Figure 8 are examples
of activities where we can determine the document on which they parse or evaluate from frame id
and resource information in their traces. However, a small number of activities in this group do not
contain any resource information. For activities with unresolved resource files (activities shown
with an orange color and dotted texture in the figure), the resource mapper uses the constructed call
stack and follows their ancestors and associates them with the caller’s resource file. For example,
appendChild JavaScript function is called by updateList and this function along with Compile Script
activity are invoked by Evaluate Script activity that is previously assigned to a JavaScript document.

Treemanipulation and rendering. For this group, we have to distinguish between the different
resources that implicitly trigger the activities that belong to this group. For styling activities, we
observe that Chrome recalculates styles after the Schedule Style Recalculation event is fired. As seen
from Figure 8, this event is fired in the middle of parsing and evaluation of a resource (typically
a JavaScript document) that attempts to modify the DOM node style. We track the call stack for
this event to the initiated parsing and evaluation activity and associate this styling activity to
the triggered document. Similarly, for layout, Chrome updates the layout tree when the Layout
Invalidate event is fired. In our example, this is fired when the command this._util.elem.innerHTML=e
is executed in the InsertBefore() function. We use a similar procedure as styling to associate layout
activities to the initiating resource from the call stack of the Layout Invalidate event.
Note that the browser does not always update the style and layout of nodes immediately after

the events are triggered. Depending on the priority of other activities in the task scheduler queue,
the browser might dispatch these activities later. As a result, when a resource triggers one of these
two events (Schedule Style Recalculation or Layout Invalidate), a second resource may fire these
events again before the browser updates the tree. In this case, we consider the first resource as the
initiator since the tree will be traversed and updated even in the absence of the second resource.
Chrome tends to composite and/or paint immediately after styling or layout which leads to repaint.
Therefore, the associated resource for the composite and paint activities simply derives by following
the chain to the last executed styling or layout activity as shown by the red arrows in the figure.
Once page loading activities are mapped to the corresponding resources, adPerf uses network

data from the crawler to link the resources to the associated network requests (i.e., URLs). Then it
uses a filter list to distinguish between ad resources and non-ad resources. We use EasyList [11], the
primary and most popular filter rules list for advertisements for our experiments. However, users
can also provide their own custom filter rules. adPerf employs adblockparser (an optimized python
package [5]) to match the URLs against filter rules. One might think that since our methodology uses
an identical rule matching procedure to ad blockers, it might incur a similar overhead. However, this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:10 Behnam Pourghassemi et al.

is not the case since rule matching in adPerf is passive and does not steal computation cycles from
the page loading process. Finally, adPerf reports the execution time of the page loading activities
categorized by ads and non-ads.

3.4 Graph builder
There exist dependencies between resources on the website. For instance, let’s say a website
downloads a JavaScript file from a third-party domain. In this file, it can further request an image or
anHTML document from another domain, and this chain can go deeper. To evaluate the performance
cost of different sources such as ad domains and to further evaluate their trustworthiness requires
first tracing this resource dependency chain and building a resource dependency graph.

We extract the dependency between resources of the websites using Zbrowse [25]. Zbrowse uses
Chrome devTools protocol and allows us to instrument, inspect, and debug the Chrome browser. It
also generates the child-parent relation for every network request. We embed Zbrowse in the adPerf
crawler module as shown in Figure 7. This way, we can extract the resources child-parent data at the
same time when we crawl the websites. The graph builder uses Zbrowse’s output and constructs the
dependency graph for resources. In cases where third-party JavaScript gets loaded into a first-party
context and makes an AJAX request, the HTTP referrer appears to be the first-party. We follow
[39] and allow the graph builder to conserve this relation and include the URL of the third-party
from which the JavaScript was loaded. Since one resource can, in turn, request multiple resources,
the constructed graph has the shape of a tree rather than simple chains of dependencies.

Figure 11 shows this graph for an example website, www.cnn.com. Here, we combine the resources
from the same domain (at each level) into one node for easier visualization. The root node is the
publisher and the remaining nodes are referred to as third-party domains. For differentiation, we
color ad nodes (domains that deliver at least one ad resource) red and non-ad nodes (domains
without any ad resources) blue in this graph. As we can see from the figure, a considerable number
of third-party domains are ad nodes. This is a concerning finding since typically publishers are not
aware of the contents delivered by third-party websites. Generally, publishers trust the first-party
domains (in the first-level of the tree) but those websites might deliver their contents from another
website or chain of websites that are not verified by the publishers. We investigate the prevalence
of such third-party ad domains, their performance cost, and trustworthiness in section 6.

4 VALIDATION OF adPerf
adPerf is a first-of-a-kind performance analyzing tool that measures the fine-grained performance
overhead of web ads at the granularity of the browser’s major stages. In the absence of tools with
similar functionality to serve as a baseline, it is challenging to test and validate adPerf. Chrome
DevTools [9], a set of web developer tools built directly into Google Chrome, provides sufficient
and useful profiling data, including a breakdown of the browser workload into stages. However, the
caveat is that the reported breakdown is for the entire page content, and it does not differentiate
between ads and main content. Therefore, we devise the following experiment to exploit Chrome
DevTools to calculate the performance of ads on a webpage and validate adPerf.
In our validation experiment, we first measure the total workload of a test page with Chrome

DevTools. Thenwe instrument the test page by cloning every ad element on the page and re-measure
the total workload. If the cloning is perfect, the added workload will present the performance
overhead of web ads. This experiment validates two main objectives:
(1) How precisely does adPerf measure the computation workload (irrespective of ads and main

content) and classify them by the browser stages? This is achieved by comparing adPerf’s
reported total workload and its breakdown with Chrome DevTools data.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:11

Fig. 9. Snapshot of www.dw.com before cloning ads. Fig. 10. Snapshot of www.dw.com after cloning ads.

(2) More important, how well does adPerf distinguish the main content workload from the
advertising workload? This is validated by comparing the performance of the added workload
(which represents only ads) measured by Chrome Devtools with adPerf’s reported ads
performance cost.

Instrumenting real-world websites is comparatively more arduous than synthetic pages due to
the complexity and obfuscation of page sources. However, we adhere to the former for the sake
of proximity to in-the-wild ads and fairness in our validations. Moreover, we duplicate every ad
element (including leaderboards, infeed ads, sticky and animated banners, etc.) and do not limit
ourselves to a specific type of ad for completeness. Without bias, we randomly pick five websites
from our test corpus (see Section 5) and instrument them. Figures 9 and 10 show an example of
this instrumentation on the appearance of a website where we observe that ads are duplicated.
Note that ads are typically delivered from a bidding system (i.e., ad exchange) thus, a duplicated ad
is not necessarily identical to the original ad. However, to minimize the impact of this stochastic
behavior, we load websites multiple times and include cases where two ads (original and cloned)
have at least the same structure and size.

Table 1 summarizes the results from the validation tests on the accuracy of adPerf in measuring
the page loading workload and fine-grained breakdown by browser stages on the original webpage.
We observe that adPerf measures total page-dependent browser computation within 0.4% to 6.8%
of Chrome DevTools for the five randomly sampled test webpages. Besides, adPerf’s breakdown
is well in line with Chrome DevTools, and all the stage measurements are below a 12% margin of
error, with a median error of 5%. This verifies adPerf’s parser, pruning, call-stack construction, and
activity classification are functioning accurately.
In Table 2, we present our results from the performance dissection of ads by both adPerf and

Chrome DevTools for the same websites. For each website, adPerf indicates ads performance cost
reported by adPerf on the original page, and Chrome signifies the ads cost estimated by Chrome
DevTools (which is measured by calculating the difference in timings between the original page
and the page with duplicated ads). The results show that adPerf’s total ad costs are within 11%
of Chrome DevTools estimation which confirms that adPerf’s graph builder, call-stack analyzer,
activity tracker, and resource matcher modules are designed correctly, and adPerf successfully

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:12 Behnam Pourghassemi et al.

Table 1. Comparison of adPerf with ChromeDevTools inmeasuring the total computation time and breakdown
by browser stages on a MacBook Air laptop.

Website Total Parsing Scripting Rendering Painting
Time Error Time Error Time Error Time Error Time Error
(sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec) (%)

newindian- adPerf 18.2 1.06 14.9 1.91 0.28
express.com Chrome 18.6 1.6 1.17 8.9 15.3 2.2 1.79 6.9 0.26 6.5
buffalonews adPerf 12.2 0.65 9.33 1.91 0.36

.com Chrome 12.6 2.9 0.58 10.9 9.88 5.5 1.83 4.5 0.33 12
huffpost.com adPerf 2.13 0.13 1.61 0.30 0.09

Chrome 2.28 6.8 0.13 <1 1.76 8.7 0.31 2.3 0.08 6.0
observer.com adPerf 3.12 0.16 2.40 0.47 0.09

Chrome 3.43 0.41 0.16 0.43 2.72 0.49 0.46 0.57 0.08 0.57
dw.com adPerf 3.20 0.25 2.34 0.51 0.10

Chrome 3.38 5.1 0.24 6.3 2.54 8.0 0.50 1.2 0.09 10.6

Table 2. Comparison of the ads performance cost reported by adPerf with Chrome DevTools estimation on
a MacBook Air laptop. adPerf indicates the ads performance cost reported by adPerf on the original page.
Chrome indicates the ads cost estimated using Chrome DevTools by computing the difference in timing
between the original page and the page with cloned ads. adPerf 2x indicates the increase in ad workload
reported by adPerf after cloning ads.

Website Total Parsing Scripting Rendering Painting
Time Err. Time Err. Time Err. Time Err. Time Err.
(ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms) (%)

adPerf 2750 134 2470 131 22
newindian Chrome 2560 7.1 120 10.4 2270 7.9 142 12 25 3.1
express.com adPerf 2x 2840 3.1 146 8.2 2540 2.9 134 4.5 21 7.1

adPerf 635 91 411 121 12
buffalonews.com Chrome 683 7.0 84 7.7 478 14 111 8.3 10 23

adPerf 2x 520 15 81 11 349 15 94 22 16 19
adPerf 694 56 432 163 43

huffpost.com Chrome 671 3.3 54 3.6 413 4.4 157 3.7 47 8.5
adPerf 2x 730 4.9 59 5.0 458 5.7 168 3.0 45 4.4
adPerf 400 17 258 117 8

observer.com Chrome 451 11 19 10.5 316 18.4 107 8.5 9 0.41
adPerf 2x 352 12 16 5.9 225 12.8 104 11.1 7 12.5
adPerf 1040 85 721 196 38

dw.com Chrome 971 6.6 93 8.6 641 11.1 190 3.1 44 13.6
adPerf 2x 870 16 85 <1 684 5.1 172 12.2 44 13.6

isolates ads from the main content. Additionally, using adPerf, we measure the increase in the total
page workload after cloning ads which are denoted by adPerf 2x in Table 2. We then compare the
former against the cost of the original ads for each website. This comparison shows that duplicating
ads does not precisely double the performance cost of ads but is within an acceptable range of 3.1%
to 16% of the original ads cost. The inaccuracy primarily stems from the fact that the cloned ads do
not exactly resemble the original ads as seen from Figures 9 and 10 due to the bidding system. We
attribute the marginal errors in the validation against Chrome DevTools to the same artifact and
anticipate adPerf’s reported ad cost to be even closer to reality.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:13

5 EXPERIMENTAL SETUP
System. Our system is a MacBook Pro with 2 cores and 8 GB RAM connected to a high-speed WiFi
(400 Mbps). The mobile experiments are conducted on a Nexus 6P (quad-core ARM Cortex-A53
+ quad-core ARM Cortex-A57 processor) connected to the cellular network. To obtain accurate
results on communication overhead, we do not set up any proxy or local server.
Test corpus. Our test corpus consists of two sets of web pages – (a) top 350 websites from Alexa
top 500 news list [6] and (b) top 200 websites from Alexa top 500 list [7]. We will refer to these
two web page datasets as news and general respectively. The two lists have only 17 websites in
common. For each dataset, we crawl the corresponding corpus twice. The first time, we crawl the
home page or landing page of the website. The second time, we randomly click a link on the home
page and crawl the page that it leads to. We exploit Chrome Popeteer [20] to automate link clicking.
We refer to the former as the landing page crawl and the latter as the post-click page crawl.
Experimental repeat. In each crawl over the corpus (total 4 crawls), we load websites multiple
times and take the average to account for fluctuations in page loading.
Evaluation domain. Since the main goal is to characterize the performance cost of ads, we
primarily provide evaluation results for the websites that contain ads. This is nearly 80% of news
websites and 40% of top general websites.

6 RESULTS AND DISCUSSION
In this section, we analyze the performance cost of ads from two viewpoints – at the ad domains
(close to the origin) and deeper in the browser (close to the metal). First, using adPerf, we analyze
the performance cost of ads on the websites broken down by costs incurred by the computation
(i.e., rendering engine) and network (i.e., resource loader). Then, we investigate a level deeper to
understand which computation stages and network resources mainly contribute to the computation
and network ad costs respectively. Finally, we zoom out and analyze the ad domains themselves to
quantify their contribution to the performance cost of web ads.

6.1 Computation cost of ads
For every website, we calculate the fraction of time spent in ad-related activities to the total activities
(ad + non-ad). Figure 12 shows the CDF distribution of this fraction for the 4 different crawls.

Finding 1. According to the figure, web ads can have a significant impact on the performance of
the website. For example, half of the news websites spend more than 15% of their computing time
on ads. Moreover, 20% of the news websites spend more than 30% of the time on advertising which
can be concerning from the user’s perspective. It also motivates website builders and ad providers
to optimize their advert contents. Compared to the news websites, ads have a lower cost on the
general corpus. The median in this corpus is 5%.

Finding 2. The figure presents another interesting detail when we compare the landing and
post-click page graphs. Ads have a higher performance cost when loading the landing page versus
the post-click page of news websites by about 25% on average. However, this is not the case for
general websites. Post-click pages of popular general websites have almost similar cost-performant
ads as the landing page. Further, we aggregate the total time spent on ad-activities across all browser
stages and compare that to the time spent on the main content. The average percentage of time
spent on ads versus main content for the news landing page, news post-click, general landing page,
and general post-click datasets is 17, 15, 11, and 10% respectively. The averages are higher than
the median percentages reported earlier because a small number of websites spend 40-50% of the
computation time on ad-activities.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:14 Behnam Pourghassemi et al.

amazon-
adsystem.com

imrworldwide
.com

usabilla.com onetrust.comfacebook.com

facebook.com doubleclick.com tidaltv.com googlesyndica
tion.com

domex.com

Fig. 11. Resource-dependency graph for
www.cnn.com. Ad nodes are colored red and
non-ad nodes are colored blue.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computation Cost Ratio of Ads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 W

eb
sit

es

Ads Computation Cost (CDF)

News (landing)
News (post-click)
General (landing)
General (post-click)

Fig. 12. Computation cost of ads in two datasets
namely top general and top news websites. Each do-
main in the dataset is crawled twice (landing page
and post-click page).

Breakdown of ad computation cost. Since we observe that ads can have a significant impact
on website loading, it is worthwhile to explore the cause of this overhead. This can guide website
builders and ad providers to focus their optimization efforts on those activities that are the primary
sources of performance loss. Accordingly, we classify the computation cost of ads by the granularity
of the browser stages (outlined in Section 2). Figure 13 shows the contribution of the six major
stages for the news corpus. For each stage, 𝑠 , we measure the following three metrics. Note that
𝑐𝑡𝑠 is the computation time of stage 𝑠 while 𝑐𝑡∗ is the total time spent in computation across all
the stages. Similarly, 𝑐𝑡𝑎𝑑 is the computation time spent on ad-activities while 𝑐𝑡∗ is the total time
spent on all activities. Therefore, 𝑐𝑡∗∗ is the total time of all computation activities in the browser.
(1) The fraction of time spent on ad-activities in stage 𝑠 to the total time spent on all activities in

stage 𝑠 [𝑐𝑡𝑠
𝑎𝑑
/𝑐𝑡𝑠∗]. This is shown by the green bars. This intra-stage metric indicates how the

workload of the stage, 𝑠 , is split between ads and the main content.
(2) The fraction of time spent on ad-activities in stage 𝑠 to the total time spent on ad-activities

across all stages [𝑐𝑡𝑠
𝑎𝑑
/𝑐𝑡∗

𝑎𝑑
]. This is shown by the blue bars. This inter-stage highlights how a

particular stage, 𝑠 , is impacted by ads compared to the other browser stages.
(3) The fraction of time spent on all activities in stage 𝑠 to the total page load computation time

[𝑐𝑡𝑠∗/𝑐𝑡∗∗]. This is another inter-stage metric shown by the red bars. However, unlike the above
metric, it shows the influence of a particular stage, 𝑠 , on the entire page load.

It is important to correlate both the inter-stage metrics to have a complete analysis. For example,
if a stage has a significant contribution to ads (i.e., second metric) but has very little impact on page
loading (i.e., third metric), then it is unlikely to be a performance optimization target.

Finding 3. Figure 13 shows that scripting has the highest impact, more than 88%, on the com-
putation cost of ads. It also has a significant impact (73%) on the computation workload of the
entire page. The difference between these two metrics indicates that ads are more scripting heavy
than the main content. This is because ad-content has 21% more dynamic characteristics than the
original page content in our news corpus which increases the time spent in scripting. However,
scripting only spends 25% of its time on ad-related content (i.e., first metric). Therefore, ads are not
the primary bottleneck of the scripting stage but optimizing this stage will considerably improve
the performance of ads as scripting is the major workload of today’s web ads on news sites.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:15

Styling
Scrip

ting

HTML Parsin
g

Layout
Paint

Composite
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

Contribution of stages in performance cost of ads
Stage ad-workload to stage workload
Stage ad-workload to total ad-workload
Stage workload to total worklaod

Fig. 13. Contribution of the different browser stages
to the performance cost of ads for the news landing
corpus. The three bars for each stage correspond to the
three ratio metrics (𝑐𝑡𝑠

𝑎𝑑
/𝑐𝑡𝑠∗ , 𝑐𝑡𝑠𝑎𝑑/𝑐𝑡

∗
𝑎𝑑
, and 𝑐𝑡𝑠∗/𝑐𝑡∗∗).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network Cost Ratio of Ads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 W

eb
sit

es

Ads Network Cost (CDF)

News (landing)
News (post-click)
General (landing)
General (post-click)

Fig. 14. Network performance cost of ads in two cor-
puses: general and news websites. Each corpus con-
tains landing and post-click pages.

Finding 4. Another observation from Figure 13 is that HTML parsing has a minor influence on
page loading, i.e., less than 5% in comparison with scripting but ads have more impact on this stage
(comparing green bars). In other words, optimizing ads HTML code is expected to improve HTML
parsing workload more than optimizing ads JavaScripts for the scripting stage, even though HTML
optimizations can only marginally improve page load time. This underscores the importance of
correlating the intra- and inter-stage metrics to guide optimization efforts. We observe similar
behavior for the general corpus as well.

6.2 Network cost of ads
Besides computation activities, loading ads imposes overhead on the network activities. To measure
the performance cost of ads over the network, for each website, we calculate the ratio of time spent
on fetching ad-related resources to the total time spent on fetching all the requested resources.
Figure 14 shows the CDF of this network cost ratio for the 4 crawls.
Finding 5. The four distributions follow the same order as in Figure 12 (computation cost of

ads), i.e., news websites incur higher network performance cost than general websites. This is not
surprising since more and/or larger ad resources also require more work in parsing, evaluating, and
rendering. According to the figure, the median of the network-cost ratio is 15% for news websites’
landing page and 3% less on the post-click page. For the general websites, the median is 6% for the
landing page and post-click page respectively.

Breakdown of ad network cost. To dissect the network costs of ads, we breakdown the network
time consumption by content type (such as HTML, image, and media). For each content type,
Table 3 summarizes statistics about the frequency of resources and network time spent on fetching
those resources for the news corpus for both landing and post-click pages. Given the number of
resources, 𝑛𝑟 , and network time spent on the resources, 𝑛𝑡 , we define three metrics for each (similar
to computation stages) as follows.

• Metrics for the number of resources (𝑛𝑟).
(1) The fraction of the number of resources of content type, 𝑐 to the total number of resources

of 𝑐 [𝑛𝑟𝑐
𝑎𝑑
/𝑛𝑟𝑐∗] (intra resource-type metric).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:16 Behnam Pourghassemi et al.

Table 3. Summary of the three metrics each for the number of resources and network time spent on resources
across two types of pages (landing page denoted by L and post-click page denoted by PC) for the news corpus.

cont. type Stats for the number of resources Stats for the request time of resources
𝑛𝑟𝑐

𝑎𝑑
/𝑛𝑟𝑐∗ 𝑛𝑟𝑐

𝑎𝑑
/𝑛𝑟∗

𝑎𝑑
𝑛𝑟𝑐∗/𝑛𝑟∗∗ 𝑛𝑡𝑐

𝑎𝑑
/𝑛𝑡𝑐∗ 𝑛𝑡𝑐

𝑎𝑑
/𝑛𝑡∗

𝑎𝑑
𝑛𝑡𝑐∗/𝑛𝑡∗∗

L PC L PC L PC L PC L PC L PC
Script 0.23 0.22 0.41 0.45 0.40 0.43 0.25 0.24 0.49 0.57 0.33 0.37
HTML 0.36 0.34 0.09 0.09 0.05 0.06 0.17 0.14 0.04 0.05 0.04 0.05
Image 0.23 0.22 0.37 0.35 0.37 0.33 0.13 0.12 0.39 0.32 0.50 0.42
Font 0.13 0.06 0.01 0.01 0.02 0.02 0.06 0.03 0.01 <0.01 0.02 0.02
CSS 0.06 0.03 0.01 0.01 0.05 0.06 0.05 0.02 0.01 0.01 0.03 0.04
XML 0.54 0.46 0.01 <0.01 <0.01 <0.01 0.68 0.43 0.01 <0.01 <0.01 <0.01
XHR 0.18 0.12 0.04 0.03 0.06 0.05 0.12 0.07 0.05 0.04 0.07 0.08
Media 0.04 0.04 <0.01 <0.01 <0.01 <0.01 0.03 0.03 <0.01 <0.01 <0.01 <0.01

Unknown 0.24 0.30 0.05 0.05 0.05 0.04 0.06 0.13 <0.01 0.01 0.01 0.01

(2) The fraction of the number of ad-resources of content type, 𝑐 to the total number of
ad-resources (of all content types)[𝑛𝑟𝑐

𝑎𝑑
/𝑛𝑟 ∗

𝑎𝑑
].

(3) The fraction of the number of resources of content type, 𝑐 to the total number of resources
[𝑛𝑟𝑐∗/𝑛𝑟 ∗∗] to highlight the popularity of the content type.

• Metrics for the network time spent on resources (𝑛𝑡).
(1) The fraction of the network time spent on ad-resources of content type, 𝑐 to the total

network time spent on resources of 𝑐 [𝑛𝑡𝑐
𝑎𝑑
/𝑛𝑡𝑐∗].

(2) The fraction of the network time spent on ad-resources of content type, 𝑐 to the total
network time spent on ad-resources (of all content types) [𝑛𝑡𝑐

𝑎𝑑
/𝑛𝑡∗

𝑎𝑑
].

(3) The fraction of the network time spent on resources of content type, 𝑐 to the total network
time spent on all resources [𝑛𝑡𝑐∗/𝑛𝑡∗∗] to accent the performance impact of content type, 𝑐 .

For instance, the first metric for network time of CSS refers to the fraction of time spent on
fetching ad-related CSS resources to the time spent on fetching all CSS resources [𝑛𝑡𝑐𝑠𝑠

𝑎𝑑
/𝑛𝑡𝑐𝑠𝑠∗].

Finding 6. Among all content types, Table 3 shows that XML has the largest percentage of
ad resources for both landing (54% which account for 68% of the network time in fetching XML
resources frommetric 1) and post-click pages (46%which take up 43% of the network time). However,
it contributes to an insignificant fraction of the network performance cost for both pages (metric
2). On the contrary, scripts and images commonly used by ad providers, make up nearly 80% of all
ad resources (metric 2) and all resources (metric 3) for both landing and post-click pages. Among
the two content types, scripts on average are 20% more popular than images for post-click pages
compared to the landing page (comparing metrics 2 and 3). Script files used in advertising alone
are responsible for almost half of the network performance cost of ads, followed by images at 40%
for landing pages (metric 2). More scripts in post-click pages correspond to a higher contribution
to the network time spent in ads (57%) for these pages compared to images (33%).

Finding 7. Ad-related HTML files constitute 34-36% of total HTML files but they only take
14-17% of download time. A deeper investigation shows that ad HTML documents are lighter
than main-content HTML. The former has a significantly small number of tags (on average 7)
including only one or two <script> tags that encapsulate small and minified code compared to the
main-content HTML files with 410 tags. Surprisingly, XHR (XMLHttpRequest) resources make up

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:17

a significant 7% of the network performance cost for the landing page and 9% for post-click pages
(metric 3). The corresponding time spent on ad resources is 5% and 4% respectively (metric 2).

6.3 Breakdown of ad performance by source
The results so far breakdown the performance cost of web ads at the lower level of granularity.
Now, we zoom out and quantify the cost of ads based on their origin, i.e., ad domains. The goal
of this lens is to gain an understanding of the third-party ad domains and their impact on the
performance cost. Accordingly, we build the resource-dependency graph (as described in section 3)
for all news websites in our test corpus. Overall we identify more than 300 distinct ad domains.

Breakdown of computation performance cost by ad domains. For every ad domain, we first
aggregate the time the rendering engine spends on evaluating the resources served by that domain.
We also measure the total time spent on ads through the crawl (ads computation cost). The ratio
between the above two is an indicator of how each third-party ad domain contributes to the
computation cost of ads. Figure 15(a) shows the contribution of the top 10 ad domains (out of 300)
in decreasing order (from left to right) of their performance impact. The number on top of each bar
is the number of websites in our corpus that are served by that ad domain.

go
og

let
ag

se
rvi

ce
s.c

om
do

ub
lec

lick
.ne

t
cre

ate
js.

co
m

go
og

les
yn

dic
ati

on
.co

m
2m

dn
.ne

t
moa

tad
s.c

om
jet

pa
ck

dig
ita

l.c
om

ad
sa

fep
rot

ec
ted

.co
m

do
ub

lev
eri

fy.
co

m

am
az

on
-ad

sy
ste

m.co
m

0.00

0.05

0.10

0.15

0.20

0.25

Ra
tio

215

283

32 262
106

62 2 92 59
155

Contribution of ad domains to performance cost

(a) Computation

do
ub

lec
lick

.ne
t

go
og

les
yn

dic
ati

on
.co

m
2m

dn
.ne

t
ad

ve
rtis

ing
.co

m
go

og
le.

co
m

ad
nx

s.c
om

trib
alf

us
ion

.co
m

ad
sa

fep
rot

ec
ted

.co
m

do
ub

lev
eri

fy.
co

m
moa

tad
s.c

om

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ra
tio

283

262
106 68 48 61 7 92 59 62

Contribution of ad domains to performance cost

(b) Network

Fig. 15. Contribution of ad domains to the performance cost of web ads. The number on top of each bar is
the number of websites serviced by that particular ad domain.

Finding 9. googletagservices.com and doubleclick.net have the highest contribution to
the computation of ads on the web. The former is a Google tag management system for managing
JavaScript and HTML tags used for tracking and analytics on websites, and the latter is a popular
ad provider. Together, they deliver about 35% of the total ad resources. Moreover, all the ads are
not delivered by well-known ad domains. In our corpus, 50% of ad domains appear only in the
dependency graph of one website.
Besides, the number of websites serviced by an ad domain is not an indicator of its perfor-

mance cost. For instance, googlesyndication.com has approximately the same contribution to
the performance cost of ads as createjs.com but it services over 8× more websites than the latter.
This is because createjs.com provides content for interactive ads (flash-like ads using HTML5
canvas) that trigger JavaScript callback functions constantly to sporadically change the content
and re-flow. createJS ads (where usually incorporated by intermediate ad domain) on 32 web-
sites of our corpus heavily use Scripting activities, 7.5% more than Scripting activities belong to
googlesyndication.com on 262 websites.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:18 Behnam Pourghassemi et al.

Breakdown of network cost by ad domains. We follow a similar procedure as above for
estimating the contribution of individual ad domains to the network cost of a page load. For every
ad domain, we first aggregate the time the browser spends on fetching resources by that domain,
Then, we calculate the ratio of the total time spent on fetching ad resources in our crawl to the
above time. Figure 15(b) shows the top 10 ad domains that have the highest contribution to the
network cost of ads in the news corpus.

Finding 10.About 35% of the network cost of ads on newswebsites is traced to doubleclick.net
followed by the popular ad syndication googleadsyndication.com with 10% contribution. Google
is the major actor in the ad ecosystem. Domains maintained by Google alone constitute approxi-
mately 51% of the total ad network cost.

Finding 11. Comparing the computation cost of domains with their network cost shows that
these two performance costs are correlated. As one might expect, fetching more and larger
documents also takes longer to evaluate and display. Interestingly, we also observe domains
that have a high computation cost but insignificant network cost and vice versa. For instance,
googletagservices.com has the highest contribution (19.7%) to the computation cost of ads among
all 300 ad domains. However, it contributes to less than 1% of the network cost (ranked 16 and
not shown in the top 10 domains in Figure 15(b)). Further breakdown of its performance cost with
adPerf reveals two JavaScript documents (osd.js and osd_listener.js) of size less than 76 KB
belonging to this domain referenced by over 200 websites in the news corpus. These two files are
part of Google Ads that track the viewability of the ads to assess the value of an impression to the
publisher and advertiser. To calculate what percentage of an ad appears in a viewable space on
the screen and for how long that portion of the ad remains visible, these JavaScript snippets are
frequently invoked by the webpage and take up valuable CPU cycles.

Breakdown of performance cost by trustworthiness. When a publisher displays an ad on
their webpage, there is an explicit trust between the publisher and the provider. However, when the
ad provider is part of a syndication, the ad is served through a chain of redirections going through
different ad domains. Our measurement results on the Alexa news and general websites shows that
the mean depth of this chain is 4, revealing ad syndication is prevalent. Most of the ad domains
on the chain are not directly visible to the publisher (except the ones directly embedded by the
publisher). As a result, the publisher cannot verify their intention (e.g., whether used for drive-by
download or phishing). This results in the publisher placing an implicit trust in the ads since the
trustworthiness of these ad domains is unknown. In this paper, we are interested in the correlation
between the performance cost of an ad domain and its trustworthiness.

To this end, we leveraged two online services, WOT (Web of Trust) [24] and VirusTotal [23], to
model the trustworthiness of an ad domain. WOT is a community-based reputation system that
assigns a score to a domain name based on user complaints and other blacklists. The score ranges
from 0 to 100, and WOT classifies domains based on their scores into 5 trust rating – excellent,
good, unsatisfactory, poor, and very poor [31]. VirusTotal is a portal that proxies the request of a
security check of a domain/URL to its affiliated blacklist services (71 blacklists). When a domain is
submitted to VirusTotal, it reports the blacklists that flag it as red. We count the ratio of blacklists
that do not raise an alarm on the domain (i.e., safe flag) as the VirusTotal score (i.e., 0 means highly
malicious and 1 is completely benign). Both WOT and VirusTotal have been used to determine the
trustworthiness of a domain by previous studies [29, 31, 38, 39].

One challenge we faced is determining thresholds for trust ratings since it varies widely across
different services that report a trustworthiness score. Therefore, to provide a fair analysis, we
report the contribution of domains to the ad cost for different thresholds. Figure 16 illustrates the
cumulative performance cost of ad domains as a function of trustworthiness assessed by WOT and
VirusTotal. For WOT, we use its default classification (5 classes) [31]. For VirusTotal, we observe

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Trustworthiness score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f p

er
fo

rm
an

ce
 c

os
t

very poor poor unsatisfactory good excellent
Trust ratings

(a) WOT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Trustworthiness score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f p

er
fo

rm
an

ce
 c

os
t

0 50 59 65 68 71
Number of servers with safe flags

(b) VirusTotal

Fig. 16. Performance cost of ads delivered by ad domains as a function of its trustworthiness score (CDF).
Both scores, WOT (top) and VirusTotal (bottom) are normalized to [0,1]. Different colors highlight different
trustworthiness rating.

that almost all of the domains receive at least 50 safe flags, so we only breakdown the region from
50 to 71 servers at the granularity of 3 servers.

Finding 12. Following the default classification of WOT, about 63% of ads cost is from ads
delivered by trusted ad domains (excellent and good rating). Nevertheless, domains that are not
trusted (unsatisfactory, poor, and very poor rating) contribute to a considerable portion of ads (37%)
which is a flag for publishers. Accordingly, for VirusTotal, we see that only 5% of the performance
cost of ads is from domains that don’t receive any red flags.

Finding 13.Domains that are moderately trusted (i.e., neither highly trusted nor untrusted) have
the highest contribution to the performance cost of ads as seen from Figure 16. The amount of drop
in the fraction of performance cost (y-axis) within each shaded region indicates the performance
cost for that level of trust. For example, domains with more than 80% WOT score (excellent trust
rating) contribute to 5% of ads performance cost while 58% of ads cost belongs to domains with
60% to 80% score (good trust rating). Likewise, domains with less than 3 VirusTotal red flags (first
shaded region from the right) account for 18% of ads cost but 55% for domains with 3 to 6 red
flags (second shaded region from the right). Our results do not assert a strong correlation between
trustworthiness and the performance impact of third-party ad domains.

Breakdown of performance cost by popularity. Similar to trustworthiness (gauged by the
delivered content), we can study the relationship between the popularity of an ad domain and its
performance impact. Accordingly, we first model the domain reputation by its popularity, which is
determined by the Alexa ranking [6], and the number of websites in our corpus to which it delivers
ads. However, there is no agreed-upon cutoff to split ad domains into popular versus unpopular. For
this reason, we follow a similar method to the trustworthiness study and present the performance
cost of ad domains at varying cutoff levels. Figure 17 illustrates the cumulative contribution of
popular domains to the performance cost of ads for two metrics.

Finding 14. Earlier in this section, we observe no correlation between the popularity of the
ad domains (i.e., number of referred websites) and the performance cost for multiple domains.
However, at the macro-level, more popular ad domains contribute more to the performance cost
as seen from Figure 17(a) and this is due to higher reach of those domains. As highlighted in this
figure, the fraction of performance cost drops about 40% within a 5% range of the most popular
ad domains. However, for the Alexa ranking, we observe multiple sharp drops throughout the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:20 Behnam Pourghassemi et al.

score range, meaning there exist multiple ad-domains that have a significant contribution to the
performance that is neither very popular nor very unpopular.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Popularity score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f p

er
fo

rm
an

ce
 c

os
t

(a) Number of referred websites

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Popularity score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f p

er
fo

rm
an

ce
 c

os
t

(b) Alexa ranking

Fig. 17. Performance cost of ads from popular domains as a function of popularity score (CDF) on the number
of referrers (top) and Alexa ranking (bottom).

6.4 Desktop vs. Mobile ads
Mobile represents a significant medium for web consumption. We repeat the experiments and load
webpages on the Nexus 6P smartphone to evaluate the performance cost of web ads on mobile
devices using adPerf. adPerf uses port forwarding to connect to the device and Chrome remote
interface to capture traces remotely on the device which they are then parsed and analyzed on
the host system. Figure 18 shows a comparison of the performance cost of web ads on mobile and
desktop for the landing page of the News corpus.

Finding 15.Mobile ads add on average 8% overhead to the page loading computation and the
same amount on the network consumption. This is a notable 7% less than desktop pages. Further
breakdown of computation cost by browser activities show a similar contribution of stages to the
ads workload, with Scripting being the highest amounting to 87%. However, the amount of scripting
work spent on ads to the total scripting workload reduced from 25% on the laptop to 13% on mobile.

Our assessment shows that this performance gap is because websites display fewer ads and they
are better optimized on mobile to deliver content on a smaller screen. Overall, the fraction of ad
documents to the total documents in the news websites dropped from 22.5% to 15.5% on the mobile
device. Table 4 breaks down the above fraction by each content type (𝑛𝑟𝑐

𝑎𝑑
/𝑛𝑟𝑐∗) except Media for

the mobile version. Across the board, a fewer number of ad documents are fetched in each category
compared to results on desktop (Table 3). For instance, ad images and scripts dropped by 44% and
24% in the mobile crawl. A recurring pattern in the websites is the absence (or limited inclusion) of
skyscraper ads on mobile with a marked difference in the performance cost. This trend is illustrated
in Figure 19 for Deutsche Welle, the popular German-based international news broadcaster. In
m.dw.com (the mobile version on the right), two side skyscraper display ads are replaced with one
in-feed ad, reducing 10% of ads performance overhead.
We investigate the sources of mobile ads and breakdown the performance cost by third-party

domains. Table 5 shows the contribution of the top mobile ad domains.
Finding 16. The sources that deliver ad content on mobile are fairly different from the desktop

version and they have a dissimilar contribution to the performance cost of web-ads. For example,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:21

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cost Ratio of Ads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 W

eb
sit

es

Ads Cost (CDF)

Network (Desktop)
Network (Mobile)
Computation (Desktop)
Computation (Mobile)

Fig. 18. Comparison of performance cost of ads
(computation and network) for mobile and laptop
on news corpus.

cont. type 𝑛𝑟𝑐
𝑎𝑑

/𝑛𝑟𝑐∗
Script 17.5%
HTML 25.7%
Image 12.8%
Font 2.2%
CSS 2.3%
XML 36%
XHR 6.4%
Media 6.3%

Table 4. Fraction of ad
documents to total doc-
uments for each content
type (𝑛𝑟𝑐

𝑎𝑑
/𝑛𝑟𝑐∗).

Domain Cost
doubleclick.net 28%

googletagservices.com 20%
googlesyndication.com 18%

ampproject.com 7%
cloudfront.net 4%
2mdn.net 4%

Table 5. Top ad domains con-
tribution to performance cost
of mobile ads.

about 7% of the performance of ads on mobile comes from ampproject.com that specifically
provides optimized ads for AMP (Accelerated Mobile Pages). Similar to desktop, doubleclick.net
and googletagservices.com have the highest contribution in mobile advertising with a combined
48% share of performance cost, 13% more compared to desktop.

Fig. 19. Snapshot of Deutsche Welle website on laptop (left) and mobile (right). Two side skyscrapper ads are
substituted with one in-feed ad on the mobile.

6.5 Applications
AdPerf and the measurement study from different viewpoints present multiple applications for
web researchers, browser developers, ad designers, content publishers, and perhaps even users.
Notwithstanding, we discuss two use-cases below.

Heavy-ad intervention. Ads that consume a disproportionate amount of resources such as
draining the battery or eating up bandwidth on a device negatively impact the user experience.
Intrusive ads range from the actively malicious, such as crypto-miners, to benign content with
inadvertent bugs or performance issues. Chrome is launching an extension to limit the resources an
ad may use and unloading that ad if the limits are exceeded. Tentatively, they define the following
criteria and coarse-grained thresholds to limit the ads [15].

• Uses the main thread (i.e., the renderer thread which executes the majority of the computation
activities) for more than 60 seconds in total or more than 15 seconds in any 30-second window.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:22 Behnam Pourghassemi et al.

• Uses more than 4 megabytes of network bandwidth.

The above metrics have been reported to have blocked many non-intrusive ads by Google
Ad Manager Native Video and YouTube Skippable Preroll ads [10, 16]. AdPerf can aid Google
engineers and potentially other browser developers to extensively study and characterize the
performance of intrusive heavy-ads in different computation stages and network resources to
establish a fine-grained threshold and criteria.

High-performance ads. AdPerf provides insight and guidance to both publishers and third-
party ad providers to improve the performance of ads by identifying the stage and/or resource
which are the main bottlenecks. For example, if adPerf identifies Scripting to be the computation and
network bottleneck of ads on a website, one can follow targeted optimizations to loading third-party
JavaScript such as lazy-loading scripts and libraries (e.g., serving an ad in the footer only when a user
scrolls down the page), splitting JavaScript bundles (e.g., dynamic import() statement), self-hosting
scripts with Service workers particularly for ad domains with consistent APIs, using resource hints
like preconnect and DNS-prefetch, sandboxing script with iframes, using asynchronous ad tag
manager in the code, and other cognate recommendations provided by Google Page Insights [18]
and Lighthouse [17]. Likewise, if Painting turns out to have excessive computation overhead for ads,
this is likely due to animated GIF in the background of ad iframe or animation triggered by CSS (e.g.,
@keyframe rules). Ad designers can follow the recommendations on painting optimization, such as
limiting manipulation to transform and opacity CSS properties that avoid repainting. Our analysis
on ad domains can also advise publishers to select their ad providers from reliable syndications
(i.e., with satisfactory trustworthiness score) that at the same time have a minimal performance
impact, considering their reach.

7 RELATEDWORK
Over the past years, there have been a handful of studies on the performance characterization of
web browsers and online advertising. Prior research mainly uses adblocker and adheres to page load
time (PLT) as the performance metric for characterizing the computation cost of ads; i.e., compare
PLT before and after content blocking to measure ads cost. On the other hand, adPerf uses the ratio
of the ad workload to the main content workload. Although adPerf’s metric provides additional
insight into the computation cost of ads, it cannot be directly compared to PLT for two reasons:
(i) PLT combines both network and computation cost into a single metric and (ii) parallelization
among activities in the browser. Moreover, with adblocking, we cannot decompose the performance
cost into lower-level browser stages (e.g., HTML parsing and JavaScript) since they block resources
at network initiation, and subsequent resource parsing, evaluation, and rendering are not captured.
Therefore, in this section, we quantitatively and/or illustratively compare related work against
adPerf.

7.1 Performance analysis of ads
Garimella et al. [36] analyze the performance efficiency and network overhead of popular ad
blockers such as Adblock Plus [4], Ghostery [13], uBlock [22], etc. According to their data, blocking
ads with Adblock Plus (Easylist rules) saves roughly 34% on cumulative network request time. This
is higher than our measured network cost (15%) without the deployment of an adblocker. Although
their setup is different and their corpus of news websites is small (Alexa top 150), they observe an
increase in the number of network requests. This is due to various tracking services of their own
and request for JavaScript modules designed for counter ad-blocking. Besides, they report a 15% to
43% increase in the CPU wall-clock when they use ad-blockers (Adblock, Adblock Plus, ublock,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

adPerf: Characterizing the Performance of Third-party Ads 3:23

and Privacy Badger) and conclude that the time to load pages is not necessarily faster due to the
overhead of ad blockers.

Butkiewicz et al. [30] break down the content of non-origin requests by MIME type and reports
images and HTML/XML contribute to 42% and 9% respectively, which is slightly higher than our
measurements, whereas, JavaScript contribution (25%) is far less than our measurements. Given
the fact that 70% of these non-origin requests belong to advertising and analytics, this comparison
signifies the rise of responsive and interactive ads within the past few years. Additionally, they
attempt to quantify the cost of third-party content on page load time. By blocking non-origin
content (using custom adblock filter), they measure 25% contribution. However, they report a
15% contribution when they consider the impact of non-origin requests on wall-clock rather than
content blocking. Although their latter method does not preclude the content blocking overhead, it
dismisses the parallelization among network requests and browser rendering activities associated
with resources, hence is not reliable.

In other related studies [50, 56], authors deploy ad blockers in the wild and then use passive
measurements on the traces to characterize the network traffic. Both studies report 17-18% of the
network requests to belong to adverts, which is close to our numbers. Similar to our measurements,
in [50], network requests are broken down by content type. However, the authors do not completely
isolate the content types (e.g., CSS and JavaScript are not categorized), and therefore, a direct
comparison is not feasible. Nevertheless, none of the studies investigate the effect of ads on the
computation cost of page loading.

7.2 Performance analysis of browsers
Another notable line of research concerns the performance analysis of browsers given their com-
plexity, large codebase, and multi-process execution. The majority of browser vendors have an
integrated profiler. Examples include the Chrome profiler [21] for Google Chrome and Gecko pro-
filer [12] for Mozilla Firefox, which provides statistics about task timing, call graph, memory usage,
and network activities. There have also been several efforts on critical path analysis [37, 46, 54, 55].
Wprof extracts the dependency graph and breaks down the activities based on type (computation
and network activities) [46, 54]. Coz+ [48] generates quantitative what-if graphs about the dynamic
behavior of the critical path, based on the idea of causal profiling [32, 49]. By analyzing Alexa top
webpages, the above study concludes that JavaScript is the critical computation activity, and 40%
improvement of this stage improves page loading performance by 8.5%. Our approach to perfor-
mance analysis is similar in spirit to the above studies. However, prior efforts did not distinguish
between the time spent in the different browser stages/activities based on the resource (ads vs.
main content).

8 CONCLUSIONS AND TAKEAWAYS
Our evaluations on the performance cost of ads lead to multiple new and interesting observations.
The key finding of this research is that ads have a significant cost, more than 15% of the computation
workload. This cost is relatively less in mobile browsing due to fewer and optimized ads for a smaller
screen. Moreover, we discover Scripting contributes to ≈ 88% of this cost in both environments
suggesting ad designers to focus more on optimizing their JavaScript codes and publishers to follow
practices for lazy loading of these scripts. We also find that ads have a different fingerprint on
browser activities and web documents compared to the main content. For example, HTML parsing
takes up only 5% of browser page loading workload (the lowest among other stages) but 29% of
that is spent on ad-related content, more than any other stage, and XML files are requested more
by the ad contents compared to the primary contents. Practitioners can use this anomaly to build a
system for detection and intervention of ads or a subset of them (e.g., intrusive ads). Our evaluation

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:24 Behnam Pourghassemi et al.

also shows that a considerable fraction of the performance cost of ads is from untrusted domains
which is a signal for the web community and to publishers to reconsider their ad-delivery network.

In this study, we did not account for ad resources that might be directly embedded in native HTML
and ad resources that cannot be detected by filter lists (i.e., websites that use circumvention to evade
filter lists). In future work, we plan to also include such sources of ad content. This addition would
only increase the performance costs of different ad breakdowns reported throughout this paper,
which we believe is already significant enough to warrant deeper attention. This work primarily
aimed at designing a methodology and open-source infrastructure for fine-grained analysis of ads
which we anticipate to be a useful tool for web researchers to prioritize their optimization efforts
on web ads and publishers to analyze the impact of ads on their websites.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd, Arif Merchant from Google, for his careful
reading and constructive feedback. This project is partially supported by the National Science
Foundation (NSF) under award number 1939237.

REFERENCES
[1] 2020. AD BLOCK DETECTION SCRIPT. https://iabtechlab.com/software/ad-block-detection-script/.
[2] 2020. Ad blocking user penetration rate in the United States. https://www.statista.com/statistics/804008/ad-blocking-

reach-usage-us.
[3] 2020. AdBlock. https://getadblock.com/.
[4] 2020. Adblock Plus. https://adblockplus.org.
[5] 2020. adblockparser. https://github.com/scrapinghub/adblockparser.
[6] 2020. Alexa Top News Sites. https://www.alexa.com/topsites/category/News.
[7] 2020. Alexa Top Sites. https://www.alexa.com/topsites/countries/US.
[8] 2020. Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-protocol.
[9] 2020. Chrome Devtools Timeline. https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/

timeline-tool.
[10] 2020. Chrome’s coming changes to video ad blocking could impact YouTube. https://martechtoday.com/chromes-

coming-changes-to-video-ad-blocking-could-impact-youtube-238360.
[11] 2020. EasyList. https://easylist.to.
[12] 2020. Gecko profiler. https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-

in_Profiler.
[13] 2020. Ghostery. https://www.ghostery.com/.
[14] 2020. Global internet advertising revenue in 2015 and 2020. https://www.statista.com/statistics/237800/global-internet-

advertising-revenue/.
[15] 2020. Handling Heavy Ad Interventions. https://developers.google.com/web/updates/2020/05/heavy-ad-interventions.
[16] 2020. Heavy Ads: (brief description of issue). https://bugs.chromium.org/p/chromium/issues/detail?id=1114329.
[17] 2020. Lighthouse. https://developers.google.com/web/tools/lighthouse.
[18] 2020. Loading Third-Party JavaScript. https://developers.google.com/web/fundamentals/performance/optimizing-

content-efficiency/loading-third-party-javascript/?utm_source=lighthouse&utm_medium=unknown.
[19] 2020. Number of active desktop adblock plugin users worldwide. https://www.statista.com/statistics/435252/adblock-

users-worldwide/.
[20] 2020. Popeteer. https://developers.google.com/web/tools/puppeteer/get-started.
[21] 2020. The Trace Event Profiling Tool. https://www.chromium.org/developers/how-tos/trace-event-profiling-tool.
[22] 2020. uBlock. https://ublock.org/.
[23] 2020. VirusTotal. https://www.virustotal.com.
[24] 2020. Website Safety, Security Check Web Of Trust. https://www.mywot.com/.
[25] 2020. Zbrowse. https://github.com/zmap/zbrowse.
[26] Daniel An. 2018. Mobile page speed. https://www.thinkwithgoogle.com/marketing-resources/data-measurement/

mobile-page-speed-new-industry-benchmarks/.
[27] Gary Anthes. 2014. Data brokers are watching you. Commun. ACM 58, 1 (2014), 28–30.
[28] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson. 2016. Tracing information flows

between ad exchanges using retargeted ads. In 25th USENIX Security Symposium. 481–496.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

https://iabtechlab.com/software/ad-block-detection-script/
https://www.statista.com/statistics/804008/ad-blocking-reach-usage-us
https://www.statista.com/statistics/804008/ad-blocking-reach-usage-us
https://getadblock.com/
https://adblockplus.org
https://github.com/scrapinghub/adblockparser
https://www.alexa.com/topsites/category/News
https://www.alexa.com/topsites/countries/US
https://chromedevtools.github.io/devtools-protocol
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
https://martechtoday.com/chromes-coming-changes-to-video-ad-blocking-could-impact-youtube-238360
https://martechtoday.com/chromes-coming-changes-to-video-ad-blocking-could-impact-youtube-238360
https://easylist.to
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler
https://www.ghostery.com/
https://www.statista.com/statistics/237800/global-internet-advertising-revenue/
https://www.statista.com/statistics/237800/global-internet-advertising-revenue/
https://developers.google.com/web/updates/2020/05/heavy-ad-interventions
https://bugs.chromium.org/p/chromium/issues/detail?id=1114329
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript/?utm_source=lighthouse&utm_medium=unknown
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript/?utm_source=lighthouse&utm_medium=unknown
https://www.statista.com/statistics/435252/adblock-users-worldwide/
https://www.statista.com/statistics/435252/adblock-users-worldwide/
https://developers.google.com/web/tools/puppeteer/get-started
https://ublock.org/
https://www.virustotal.com
https://www.mywot.com/
https://github.com/zmap/zbrowse
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/

adPerf: Characterizing the Performance of Third-party Ads 3:25

[29] Hamad Binsalleeh. 2014. Analysis of Malware and Domain Name System Traffic. Ph.D. Dissertation. Concordia
University.

[30] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. 2011. Understanding website complexity: measurements,
metrics, and implications. In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference.
313–328.

[31] Pern Hui Chia and Svein Johan Knapskog. 2011. Re-evaluating the wisdom of crowds in assessing web security. In
International Conference on Financial Cryptography and Data Security. Springer, 299–314.

[32] Charlie Curtsinger and Emery D Berger. 2015. COZ: Finding Code that Counts with Causal Profiling. In Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 184–197.

[33] Alexandre De Corniere and Romain De Nijs. 2016. Online advertising and privacy. The RAND Journal of Economics 47,
1 (2016), 48–72.

[34] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site measurement and analysis. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM, 1388–1401.

[35] David S Evans. 2009. The online advertising industry: Economics, evolution, and privacy. Journal of economic
perspectives 23, 3 (2009), 37–60.

[36] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-blocking: A study on performance, privacy
and counter-measures. In Proceedings of the 2017 ACM on Web Science Conference. ACM, 259–262.

[37] Hossein Golestani, Scott Mahlke, and Satish Narayanasamy. 2019. Characterization of Unnecessary Computations in
Web Applications. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 11–21.

[38] Muhammad Ikram andMohamedAli Kaafar. 2017. A first look at mobile ad-blocking apps. In 2017 IEEE 16th International
Symposium on Network Computing and Applications (NCA). IEEE, 1–8.

[39] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha Loizon, and Roya Ensafi. 2019. The
chain of implicit trust: An analysis of the web third-party resources loading. In The World Wide Web Conference. ACM,
2851–2857.

[40] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The ad wars: retrospective measurement and analysis of anti-adblock
filter lists. In Proceedings of the 2017 Internet Measurement Conference. ACM, 171–183.

[41] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu, Zhiyun Qian, and Benjamin Livshits. 2018. Adgraph: A machine
learning approach to automatic and effective adblocking. arXiv preprint arXiv:1805.09155 (2018).

[42] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner. 2016. Internet jones and the raiders
of the lost trackers: An archaeological study of web tracking from 1996 to 2016. In 25th USENIX Security Symposium.

[43] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012. Knowing your enemy: understanding
and detecting malicious web advertising. In Proceedings of the 2012 ACM conference on Computer and communications
security. ACM, 674–686.

[44] Leo A Meyerovich and Rastislav Bodik. 2010. Fast and parallel webpage layout. In Proceedings of the 19th international
conference on World wide web. ACM, 711–720.

[45] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting anti ad-blockers in the wild. Proceedings
on Privacy Enhancing Technologies 2017, 3 (2017), 130–146.

[46] Javad Nejati and Aruna Balasubramanian. 2016. An In-depth study of Mobile Browser Performance. In Proceedings of
the 25th International Conference on World Wide Web. 1305–1315.

[47] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez, Marjan Falahrastegar, Julia E Powles,
Emiliano De Cristofaro, Hamed Haddadi, and Steven J Murdoch. 2016. Adblocking and counter blocking: A slice of the
arms race. In 6th USENIX Workshop on Free and Open Communications on the Internet (FOCI 16).

[48] Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna Chandramowlishwaran. 2019. What-If Analysis of Page Load
Time in Web Browsers Using Causal Profiling. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 2 (2019), 1–23.

[49] Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna Chandramowlishwaran. 2021. Only Relative Speed Matters:
Virtual Causal Profiling. ACM SIGMETRICS Performance Evaluation Review (2021).

[50] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed users: Ads and ad-block usage in the wild. In
Proceedings of the 2015 Internet Measurement Conference. ACM, 93–106.

[51] M Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and Nick Nikiforakis. 2016. It’s free for a
reason: Exploring the ecosystem of free live streaming services. In Proceedings of the 23rd Network and Distributed
System Security Symposium (NDSS 2016). Internet Society, 1–15.

[52] RJG Simons and Aiko Pras. 2010. The hidden energy cost of web advertising. In Proceedings of the 12th Twente Student
Conference on Information Technology. 1–8.

[53] Peter Snyder, Antoine Vastel, and Ben Livshits. 2020. Who Filters the Filters: Understanding the Growth, Usefulness
and Efficiency of Crowdsourced Ad Blocking. Proceedings of the ACM on Measurement and Analysis of Computing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

3:26 Behnam Pourghassemi et al.

Systems 4, 2 (2020), 1–24.
[54] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wetherall. 2013. Demystifying Page

Load Performance with WProf.. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). 473–485.

[55] ZhenWang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. Why AreWeb Browsers Slow on Smartphones?.
In Proceedings of the 12th Workshop on Mobile Computing Systems and Applications. 91–96.

[56] Craig E Wills and Doruk C Uzunoglu. 2016. What ad blockers are (and are not) doing. In 2016 Fourth IEEE Workshop on
Hot Topics in Web Systems and Technologies (HotWeb). IEEE, 72–77.

[57] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M Pujol. 2016. Tracking the trackers. In Proceedings of the 25th
International Conference on World Wide Web. 121–132.

[58] Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq, and Weiteng Chen. 2019. ShadowBlock: A
Lightweight and Stealthy Adblocking Browser. In The World Wide Web Conference. ACM, 2483–2493.

Received October 2020; revised December 2020; accepted January 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 3. Publication date: March 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Ad blocking and performance analysis
	2.2 Browser architecture

	3 Methodology and adPerf
	3.1 Crawler
	3.2 Parser
	3.3 Resource mapper
	3.4 Graph builder

	4 Validation of adPerf
	5 Experimental setup
	6 Results and Discussion
	6.1 Computation cost of ads
	6.2 Network cost of ads
	6.3 Breakdown of ad performance by source
	6.4 Desktop vs. Mobile ads
	6.5 Applications

	7 Related Work
	7.1 Performance analysis of ads
	7.2 Performance analysis of browsers

	8 Conclusions and Takeaways
	9 Acknowledgements
	References

