
Numerical Algorithms with Tunable Parallelism

Aparna Chandramowlishwaran∗, Abhinav Kahru†, Ketan Umare†, Richard Vuduc∗

Georgia Institute of Technology
Computational Science and Engineering Division, College of Computing

266 Ferst Drive, Atlanta, Georgia 30332-0765, USA
∗{aparna,richie}@cc.gatech.edu, †{akarhu3,kumare3}@gatech.edu

ABSTRACT
In this “idea” paper, we advocate the study of recently de-
veloped numerical algorithms that have tunable parallelism,
which may provide a mechanism for a class of scientific ap-
plications to cope with or exploit heterogeneous multi- and
many-core architectures. In particular, suppose we are given
a physical system described by a partial differential equa-
tion (PDE) that we wish to integrate (i.e., solve) numeri-
cally; rather than using traditional algorithms that are de-
signed primarily with data-parallelism in mind, our goal is
to produce numerical algorithms that have a mix of highly
asynchronous task-level parallelism and synchronous data-
parallelism, with an algorithmic “tuning knob” that at run-
time can control the degree and type of parallelism. Such
an algorithm and its implementation can in principle adapt
to any hardware environment, whether it be highly multi-
threaded, support efficient data-parallel execution through
large or small vector units, or have some heterogeneous mix
of such components.

The mathematical framework we consider here is the asyn-
chronous variational integrator (AVI) framework of Lew,
Marsden, Ortiz, and West (2003), in which an interesting
class of continuous physical systems can be modeled and
solved using what are essentially discrete-event simulation
techniques. Beyond having attractive numerical properties,
the numerical algorithms derived in the AVI framework can
have the sort of tunable-parallel property described above.
We believe AVI-based algorithms constitute an interesting
workload for evaluating emerging parallel hardware and soft-
ware systems; by extension, AVI-like methods should be
a fruitful area of collaborative algorithmic and systems re-
search.

1. INTRODUCTION: WHY AVI?
The asynchronous variational integrator (AVI) framework

of Lew, et al., was originally developed for time-integration
of partial differential equations (PDEs) arising in nonlinear
elastodynamics, with the spatial domain discretized using fi-
nite elements [9]. The key numerical idea in the AVI frame-
work is to allow each element of the spatial domain to have
its own time step, as opposed to traditional time-integrators
which use a uniform time step throughout the domain. In
principle, an AVI costs many fewer flops than a traditional
integrator, since the solution in each region of the domain
“evolves” only as needed. (An AVI may execute two orders
of magnitude fewer flops than a synchronous algorithm [7].)
The geometric and numerical features of the solution at each
element dictate the time step, and there are execution de-

pendency constraints among elements to ensure causality.
While there are other multiple time-step integrators in the
literature, AVIs appear to have theoretically more clean and
sound numerical properties [9]. For instance, AVIs are au-
tomatically symplectic, and time steps need not be integral
multiples of each other.

AVIs are interesting from a systems and parallelism per-
spective because the asynchronous approach implies task-
level parallelism, compared to a traditional integrator that is
generally dominated by data-parallelism. Issues of dynamic
scheduling, migration, and synchronization are of paramount
importance for AVIs.

“Tunable parallelism” in AVIs arises as follows. The basic
unit of work in an AVI is an element update, which involves
a regular data-parallel computation. For each element, geo-
metric properties dictate the maximum possible time step;
we are free to aggregate elements to coarsen the unit of work,
and then to choose the time-step to satisfy the upper-bounds
for all aggregated elements, thereby obtaining an effectively
larger unit of data-parallel work. In this way, we can effec-
tively tune the degree and type of available parallelism.

We have thus far pursued three broad AVI implemen-
tation approaches for multicore systems, to better under-
stand the inherent parallelism and asynchronous behavior
of AVIs. The first is a traditional Pthreads implementation,
with novel judicious scheduling of element updates. In the
second, we recognize that AVIs are often implemented us-
ing shared data structures, the access to which may require
heavy synchronization; we consider a software transactional
memory-based implementation in this case. Thirdly, an AVI
may be treated as a discrete event simulation (DES), and
so we have implemented AVI within a parallel DES system,
GTW [5]. We discuss this work below.

Figure 1 illustrates the asynchronous processing of mesh
elements in a 4-thread run of one of our implementations.
The domain is an elastic box that has been stretched to the
right (in the positive x-direction) and has been discretized
into approximately 200,000 triangular elements. The left
subplot shows where in the domain the first 5,000 element
updates occurred; each update is shaded by one of four col-
ors, one color for each of the 4 threads. The right subplot
shows the next 5,000 elements. We see clusters of updates
occurring near elements with the smallest time-stamps, with
regions updated irregularly, e.g., compare the region inside
the grey circle centered at approximately (x, y) = (.45, .52).

2. PARALLELIZATION ISSUES
There have been at least two prior efforts to parallelize



Figure 1: (Color) Two consecutive snapshots of active regions in a finite element mesh, for a 4-thread run.
We color each element according to which of the 4 threads (red, green, blue, or black) is updating it.

AVIs, both of which partition the domain and assign subdo-
mains to logical processes, for shared [6] and distributed [7]
memory systems. Both rely on globally shared data struc-
tures, which can be synchronization bottlenecks.

Our work builds on the shared memory implementation
of Huang, et al. [6]. Huang, et al., first observe that the
mesh elements, each with its own time-step (and, therefore,
simulation time-stamp of its next update), implicitly define
a dependency graph. Each mesh element is a node; there is
an edge (u, v) if u and v are adjacent in the mesh and the
current time-stamp of v is less than that of u (the causality
constraint). They then show that, in the best case, there
can be abundant parallelism: a mesh of n elements with an
average of d neighbors each will have O(n

d
) elements with

only in-edges, i.e., which are ready to execute because they
are “local minima” in their time-stamp [6]. Their implemen-
tation consists of a global shared work queue of these “ready
elements”; a free thread extracts a work unit from this queue
and updates the corresponding element. After updating an
element, the thread checks if completion of an update at
the current element may enable a neigboring element to ex-
ecute, and if so, moves that element into the ready queue.
To increase the computation per work unit, we may group
elements into larger “super-elements.” The overall approach
requires synchronization to globally shared data structures.

We have considered several alternative implementation
choices and improvements, summarized as follows.

Smarter scheduling. A thread may choose any element in
the work queue; some elements may actually enable more
new ready elements if judiciously selected. We have consid-
ered a variety of approaches for identifying these elements
based on inspection of neighboring time-stamps and depen-
dency structures within the neighborhood of each element.

More efficient shared data structures. We have replaced
the existing data structures with new, more efficient, and
more modular data structures with finer-grained lock place-
ment and better locality. In addition, we have considered
traditional Pthreads-based implementations as well as im-
plementations based on the Rochester Software Transac-
tional Memory library [4].

Optimistic parallel discrete event simulation (DES) soft-
ware frameworks. An AVI can be naturally cast as a DES:

element (or super-element) updates become events with pre-
scribed time-stamps, and the DES software framework takes
care of all the scheduling and causality-preserving details.
Indeed, implementing AVI in DES is relatively simple, re-
quiring significantly fewer lines of code than building AVI
from scratch. Moreover, we benefit from existing research
and implementation in optimistic parallel DES, in which
events execute optimistically and are rolled back automati-
cally if causality constraints are violated, which is similar in
spirit to transactional memory systems.

3. CURRENT STATUS
The combination of the techniques we have investigated

has led to more scalable AVI implementations than in the
prior work by Huang, et al. For instance, we have observed
speedups near 30 using 64 threads on a Niagara 2 machine.
Our current status is to test the tunable task- and data-
parallel hypothesis by implementing aggregation for data-
parallelism, where the data-parallel computations tuned with
respect to the available SIMD or vector hardware, and for
more irregular mesh discretizations than the one shown in
Figure 1, which would better stress-test the methods.

Note that a parallel DES formulations of continuous sys-
tems simulations are not limited to AVI methods; we refer
the interested reader to additional related work [8, 10].

AVIs are similar in spirit to recent work in which “classi-
cal” dense linear algebra kernels are reformulated to expose
task-level parallelism [1, 2]. We may more broadly interpret
the AVI implementation as generating a dynamically chang-
ing directed acyclic graph for which we seek efficient systems
support for parallelization, reminiscent of work pursued in
the by-gone era of dataflow architectures [3].

Acknowledgments
We wish to thank Richard Fujimoto and Jen-Chih Huang
for pointing us in the direction of AVIs.

4. REFERENCES
[1] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A

class of parallel tiled linear algebra algorithms for
multicore architectures. Technical Report LAWN 191,



UT-CS-07-600, University of Tennessee, September
2007.

[2] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and
R. van de Geijn. SuperMatrix out-of-order scheduling
of matrix operations for SMPand multi-core
architectures. In Proc. ACM SPAA, pages 116–125,
2007.

[3] F. T. Chong, S. D. Sharma, E. A. Brewer, and
J. Saltz. Multiprocessor runtime support for
fine-grained irregular DAGs. Nova Science Publishers,
Inc., 1995.

[4] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L.
Scott. Capabilities and limitations of library-based
software transactional memory in c++. In
Proc. TRANSACT, Portland, OR, USA, August 2007.

[5] S. Das, R. M. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. GTW: A time warp system for shared
memory processors. In Proc. Winter Sim. Conf., pages
1332–1339, 1994.

[6] J.-C. Huang, X. Jiao, R. M. Fujimoto, and H. Zha.
DAG-guided parallel asynchronous variational
integrators with super-elements. In Proc. Summer
Comp. Sim. Conf., San Diego, CA, USA, July 2007.

[7] K. G. Kale and A. J. Lew. Parallel asynchronous
variational integrators. Int. J. Numer. Meth. Engng,
70:291–321, 2007.

[8] H. Karimabadi, J. Driscoll, Y. A. Omelchenko, and
N. Omidi. A new asychronous methodology for
modeling of continuous systems: Breaking the curse of
the Courant condition. J. Comp. Phys., 205:755–775,
2005.

[9] A. Lew, J. Marsden, M. Ortiz, and M. West.
Asynchronous variational integrators. Arch. Rational
Mech. Anal., 2003.

[10] J. J. Nutaro. Parallel discrete event simulation with
application to continuous systems. PhD thesis, 2003.


